1 |
[en] PROBABILISTIC SIMULTANEOUS LOCALIZATION AND MAPPING OF MOBILE ROBOTS IN INDOOR ENVIRONMENTS WITH A LASER RANGE FINDER / [pt] LOCALIZAÇÃO E MAPEAMENTO PROBABILÍSTICO SIMULTÂNEOS DE ROBÔS MÓVEIS EM AMBIENTES INTERNOS COM UM SENSOR DE VARREDURA A LASERSMITH WASHINGTON ARAUCO CANCHUMUNI 19 August 2014 (has links)
[pt] Os Robôs Móveis são cada vez mais inteligentes, para que eles tenham a capacidade de semover livremente no interior deumambiente, evitando obstáculos e sem assistência de um ser humano, precisam possuir um conhecimento prévio do ambiente e de sua localização. Nessa situação, o robô precisa construir um mapa local de seu ambiente durante a execução de sua missão e, simultaneamente, determinar sua localização. Este problema é conhecido como Mapeamento e Localização Simultâneas (SLAM). As soluções típicas para o problema de SLAM utilizam principalmente dois tipos de sensores: (i) odômetros, que fornecem informações de movimento do robô móvel e (ii) sensores de distância, que proporcionam informação da percepção do ambiente. Neste trabalho, apresenta-se uma solução probabilistica para o problema SLAM usando o algoritmo DP-SLAM puramente baseado em medidas de um LRF (Laser Range Finder), com foco em ambientes internos estruturados. Considera-se que o robô móvel está equipado com um único sensor 2DLRF, sem nenhuma informação de odometria, a qual é substituída pela informação obtida da máxima sobreposição de duas leituras consecutivas do sensor LRF, mediante algoritmos de Correspondência de Varreduras (Scan Matching). O algoritmo de Correspondência de Varreduras usado realiza uma Transformada de Distribuições Normais (NDT) para aproximar uma função de sobreposição. Para melhorar o desempenho deste algoritmo e lidar com o LRF de baixo custo, uma reamostragem dos pontos das leituras fornecidas pelo LRF é utilizada, a qual preserva uma maior densidade de pontos da varredura nos locais onde haja características importantes do ambiente. A sobreposição entre duas leituras é otimizada fazendo o uso do algoritmo de Evolução Diferencial (ED). Durante o desenvolvimento deste trabalho, o robô móvel iRobot Create, equipado com o sensor LRF Hokuyo URG-04lx, foi utilizado para coletar dados reais de ambientes internos, e diversos mapas 2D gerados são apresentados como resultados. / [en] The robot to have the ability to move within an environment without the assistance of a human being, it is required to have a knowledge of the environment and its location within it at the same time. In many robotic applications, it is not possible to have an a priori map of the environment. In that situation, the robot needs to build a local map of its environment while executing its mission and, simultaneously, determine its location. A typical solution for the Simultaneous Localization and Mapping (SLAM) problem primarily uses two types of sensors: i) an odometer that provides information of the robot’s movement and ii) a range measurement that provides perception of the environment. In this work, a solution for the SLAM problem is presented using a DP-SLAM algorithm purely based on laser readings, focused on structured indoor environments. It considers that the mobile robot only uses a single 2D Laser Range Finder (LRF), and the odometry sensor is replaced by the information obtained from the overlapping of two consecutive laser scans. The Normal Distributions Transform (NDT) algorithm of the scan matching is used to approximate a function of the map overlapping. To improve the performance of this algorithm and deal with low-quality range data from a compact LRF, a scan point resampling is used to preserve a higher point density of high information features from the scan. An evolution differential algorithm is presented to optimize the overlapping process of two scans. During the development of this work, the mobile robot iRobot Create, assembled with one LRF Hokuyo URG-04LX, is used to collect real data in several indoor environments, generating 2D maps presented as results.
|
2 |
[en] COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR VISUAL SELF-LOCALIZATION AND MAPPING OF MOBILE ROBOTS / [pt] LOCALIZAÇÃO E MAPEAMENTO DE ROBÔS MÓVEIS UTILIZANDO INTELIGÊNCIA E VISÃO COMPUTACIONALNILTON CESAR ANCHAYHUA ARESTEGUI 18 October 2017 (has links)
[pt] Esta dissertação introduz um estudo sobre os algoritmos de inteligência computacional para o controle autônomo dos robôs móveis, Nesta pesquisa, são desenvolvidos e implementados sistemas inteligentes de controle de um robô móvel construído no Laboratório de Robótica da PUC-Rio, baseado numa modificação do robô ER1. Os experimentos realizados consistem em duas etapas: a primeira etapa de simulação usando o software Player-Stage de simulação do robô em 2-D onde foram desenvolvidos os algoritmos de navegação usando as técnicas de inteligência computacional; e a segunda etapa a implementação dos
algoritmos no robô real. As técnicas implementadas para a navegação do robô móvel estão baseadas em algoritmos de inteligência computacional como são redes neurais, lógica difusa e support vector machine (SVM) e para dar suporte visual ao robô móvel foi implementado uma técnica de visão computacional
chamado Scale Invariant Future Transform (SIFT), estes algoritmos em conjunto fazem um sistema embebido para dotar de controle autônomo ao robô móvel. As simulações destes algoritmos conseguiram o objetivo, mas na implementação surgiram diferenças muito claras respeito à simulação pelo tempo que demora em processar o microprocessador. / [en] This theses introduces a study on the computational intelligence algorithms for autonomous control of mobile robots, In this research, intelligent systems are developed and implemented for a robot in the Robotics Laboratory of PUC-Rio, based on a modiÞcation of the robot ER1. The verification consist of two stages: the first stage includes simulation using Player-Stage software for simulation of the robot in 2-D with the developed of artiÞcial intelligence; an the second stage, including the implementation of the algorithms in the real robot. The techniques implemented for the navigation of the mobile robot are based on algorithms of computational intelligence as neural networks, fuzzy logic and support vector machine (SVM); and to give visual support to the mobile robot was implemented the visual algorithm called Scale Invariant Future Transform (SIFT), these algorithms in set makes an absorbed system to endow with independent control the mobile robot. The simulations of these algorithms had obtained the objective
but in the implementation clear differences had appeared respect to the simulation, it just for the time that delays in processing the microprocessor.
|
3 |
[en] ROBOTIC DEVICE FOR MOBILITY ASSISTANCE TO ELDERLY PEOPLE IN URBAN ENVIRONMENTS / [pt] DISPOSITIVO ROBÓTICO PARA ASSISTÊNCIA À LOCOMOÇÃO DE PESSOAS IDOSAS EM AMBIENTES URBANOSDANIEL DE SOUSA LEITE 22 December 2017 (has links)
[pt] Com o aumento da expectativa, de vida o envelhecimento da população vem se tornando uma realidade cada vez mais presente no Brasil e no mundo. Esse novo panorama demográfico já é vivenciado por países ricos, que vêm cada vez mais investindo para se enquadrar nessa nova realidade, seja por meio da adaptação de suas cidades ou pelo desenvolvimento de novas tecnologias para melhora da qualidade de vida. Na área da robótica, diversas pesquisas vêm sendo desenvolvidas com o intuito de reabilitação e melhora da qualidade de vida da população idosa. Nesses trabalhos são desenvolvidos, por exemplo, dispositivos que buscam auxiliar o idoso na realização de suas atividades diárias, provendo, principalmente, suporte e prevenção de quedas. Essa dissertação de mestrado apresenta o desenvolvimento do protótipo de um dispositivo para assistência a locomoção de pessoas idosas que possuam alguma deficiência visual, motora e/ou cognitiva. O dispositivo tem como objetivo guiar o usuário em ambientes urbanos de maneira autônoma. O protótipo deve ser capaz de desviar de qualquer obstáculo que possa levar o idoso à queda, além de ter uma estrutura que ofereça apoio para o seu deslocamento. O dispositivo proposto possui uma estrutura semelhante a um andador, cuja base é um robô móvel diferencial. Para que possa obter informações do ambiente, o dispositivo está equipado com sensores de distância, uma central inercial e encoders nas rodas. Todo o processamento ocorre em uma CPU de baixo custo, Raspberry Pi 1 versão 2, embarcada no próprio dispositivo e o controle de navegação ocorre por meio de um algoritmo baseado em lógica Fuzzy. Os acessos ao hardware e software de controle do dispositivo são gerenciados pelo framework de robótica Player (Gerkey e contribuidores, 2010). Para que o dispositivo receba a rota de navegação ele está conectado a um celular, com sistema operacional Android, via protocolo TCP/IP. Esse celular está executando uma API (Application Programming Interface) do Google Maps que fornece direção e distância ao objetivo a cada passo da interação, além da localização global do dispositivo, por meio do sensor GPS do celular. O objetivo deve ser inicialmente estabelecido pelo usuário por meio da API desenvolvida, para que a navegação autônoma ocorra. Além da navegação autônoma, o dispositivo permite que usuário envie comandos diretamente para os motores por meio de sensores de força instalados próximos aos pontos de apoio do usuário. / [en] With the increase in life expectation, the ageing population has become more present in Brazil and the world. This new demographic scenery has been already framed by rich countries, which are increasingly investing to fit this new reality, either through the adaptation of their cities or the development of new technologies to improve the quality of life. In the area of robotics, several researches have been developed with the aim of rehabilitation and improvement of the quality of life of the elderly population. These researches are developing, for example, devices to assist the elderly in carrying out their daily activities, providing support and prevention of falls. This work presents the development of the prototype of a device to assist elderly person with any visual, cognitive and/or motor impairment to locomotion by itself. The device aims to guide the user autonomously in urban environments. The prototype should be able to avoid any obstacle that can cause the elderly to fall, besides having a structure that offers support for his balance. The proposed device has a structure similar to a walker whose base is a differential mobile robot. For the device be able to get information from the environment, it is embedded with range sensors, a measurement central unit and encoders at the wheels. All processing occurs in a low-cost CPU, Raspberry Pi 1 B version 2, which is embedded in the mobile device, and the navigation control algorithm is based on fuzzy logic. The robotic framework Player (Gerkey and contributors, 2010) provides the access to the hardware and software of the device. For the device to receive the navigation route, it is connected to an Android operating system phone, by TCP/IP protocol. This phone runs an API (Application Programming Interface) from Google Maps that provides the direction and the distance to the goal in every step of its interaction, besides the global location of the robot, provided by the GPS sensor of the phone. The user should firstly set the goal with the API developed, so that the autonomous navigation will occur. In addition to the autonomous navigation, the device allows the user to send commands directly to the motors by means of the force sensors installed at the robot cane.
|
Page generated in 0.0382 seconds