• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

[en] MARKOV CHAIN MONTE CARLO FOR NATURAL INFLOW ENERGY SCENARIOS SIMULATION / [pt] MARKOV CHAIN MONTE CARLO PARA SIMULAÇÃO DE CENÁRIOS DE ENERGIA NATURAL AFLUENTE

HUGO RIBEIRO BALDIOTI 11 January 2019 (has links)
[pt] Constituído por uma matriz eletro-energética predominantemente hídrica e território de proporções continentais, o Brasil apresenta características únicas, sendo possível realizar o aproveitamento dos fartos recursos hídricos presentes no território nacional. Aproximadamente 65 por cento da capacidade de geração de energia elétrica advém de recursos hidrelétricos enquanto 28 por cento de recursos termelétricos. Sabe-se que regimes hidrológicos de vazões naturais são de natureza estocástica e em função disso é preciso tratá-los para que se possa planejar a operação do sistema, sendo assim, o despacho hidrotérmico é de suma importância e caracterizado por sua dependência estocástica. A partir das vazões naturais é possível calcular a Energia Natural Afluente (ENA) que será utilizada diretamente no processo de simulação de séries sintéticas que, por sua vez, são utilizadas no processo de otimização, responsável pelo cálculo da política ótima visando minimizar os custos de operação do sistema. Os estudos referentes a simulação de cenários sintéticos de ENA vêm se desenvolvendo com novas propostas metodológicas ao longo dos anos. Tais desenvolvimentos muitas vezes pressupõem Gaussianidade dos dados, de forma que seja possível ajustar uma distribuição paramétrica nos mesmos. Percebeu-se que na maioria dos casos reais, no contexto do Setor Elétrico Brasileiro, os dados não podem ser tratados desta forma, uma vez que apresentam em sua densidade comportamentos de cauda relevantes e uma acentuada assimetria. É necessário para o planejamento da operação do Sistema Interligado Nacional (SIN) que a assimetria intrínseca a este comportamento seja passível de reprodução. Dessa forma, este trabalho propõe duas abordagens não paramétricas para simulação de cenários. A primeira refere-se ao processo de amostragem dos resíduos das séries de ENA, para tanto, utiliza-se a técnica Markov Chain Monte Carlo (MCMC) e o Kernel Density Estimation. A segunda metodologia proposta aplica o MCMC Interconfigurações diretamente nas séries de ENA para simulação de cenários sintéticos a partir de uma abordagem inovadora para transição entre as matrizes e períodos. Os resultados da implementação das metodologias, observados graficamente e a partir de testes estatísticos de aderência ao histórico de dados, apontam que as propostas conseguem reproduzir com uma maior acurácia as características assimétricas sem perder a capacidade de reproduzir estatísticas básicas. Destarte, pode-se afirmar que os modelos propostos são boas alternativas em relação ao modelo vigente utilizado pelo setor elétrico brasileiro. / [en] Consisting of an electro-energetic matrix with hydro predominance and a continental proportion territory, Brazil presents unique characteristics, being able to make use of the abundant water resources in the national territory. Approximately 65 percent of the electricity generation capacity comes from hydropower while 28 percent from thermoelectric plants. It is known that hydrological regimes have a stochastic nature and it is necessary to treat them so the energy system can be planned, thus the hydrothermal dispatch is extremely important and characterized by its stochastic dependence. From the natural streamflows it is possible to calculate the Natural Inflow Energy (NIE) that will be used directly in the synthetic series simulation process, which, in turn, are used on the optimization process, responsible for optimal policy calculation in order to minimize the system operational costs. The studies concerning the simulation of synthetic scenarios of NIE have been developing with new methodological proposals over the years. Such developments often presuppose data Gaussianity, so that a parametric distribution can be fitted to them. It was noticed that in the majority of real cases, in the context of the Brazilian Electrical Sector, the data cannot be treated like that, since they present in their density relevant tail behavior and skewness. It is necessary for the National Interconnected System (SIN) operational planning that the intrinsic skewness behavior is amenable to reproduction. Thus, this paper proposes two non-parametric approaches to scenarios simulation. The first one refers to the process of NIE series residues sampling, using a Markov Chain Monte Carlo (MCMC) technique and the Kernel Density Estimation. The second methodology is also proposed where the MCMC is applied periodically and directly in the NIE series to simulate synthetic scenarios using an innovative approach for transitions between matrices. The methodologies implementation results, observed graphically and based on statistical tests of adherence to the historical data, indicate that the proposals can reproduce with greater accuracy the asymmetric characteristics without losing the ability to reproduce basic statistics. Thus, one can conclude that the proposed models are good alternatives in relation to the current model of the Brazilian Electric Sector.
2

[en] COPULA MODELS FOR STREAMFLOW SCENARIO SIMULATION / [pt] MODELOS DE CÓPULAS PARA SIMULAÇÃO DE CENÁRIOS HIDROLÓGICOS

GUILHERME ARMANDO DE ALMEIDA PEREIRA 26 April 2018 (has links)
[pt] Muitos dos modelos de simulação de cenários de vazões, necessários para o planejamento e operação de setores elétricos, são construídos sob hipóteses rígidas. Isto pode restringir sua capacidade de representar dependências não-lineares e\ou distribuições não usuais. Cópulas superam estas limitações. Elas possibilitam que o comportamento marginal das variáveis seja modelado separadamente da estrutura de dependência do vetor aleatório. Além do mais, podem representar os mais diversos tipos de associações. Isto posto, esta tese apresenta 3 artigos onde modelos de cópulas são desenvolvidos visando a simulação de cenários de vazões. No primeiro artigo, propomos um modelo periódico de cópulas vine espaciais para simulação multivariada. As principais contribuições são a extensão para o caso periódico dos modelos de cópulas vine espaciais; a drástica redução do número de parâmetros; o desenvolvimento de um modelo não linear multivariado para simulação de cenários de vazões que incorpora a dependência temporal, a dependência espacial, a variação sazonal e o elevado número de usinas (alta dimensão). No segundo artigo, realizamos algumas modificações no modelo periódico espacial proposto que resultam em uma menor complexidade sem perda de performance. No terceiro artigo, propomos uma metodologia baseada em cópulas vine para modelar a dependência temporal de séries periódicas uni variadas de vazões. Dentre as contribuições destaca-se a construção de uma versão não-linear dos modelos periódicos autorregressivos (PAR(p)) onde a dependência temporal de qualquer ordem pode ser considerada; a possibilidade da incorporação de efeitos lineares e não-lineares; um modelo que não simula cenários com valores negativos; a flexibilidade para se modelar as distribuições marginais mensais. / [en] Many streamflow scenario simulation models, which are needed for the planning and operation of energy systems, are built on rigid assumptions. This may limit their ability to represent nonlinear dependencies and/or nonstandard distribution functions. Copulas overcome these drawbacks and represent a flexible tool for modeling multivariate distributions. They enable the modeling of the marginal behavior of variables separately from the dependence structure of a random vector. Moreover, they can represent any type of association. This thesis is composed of three working papers, wherein copula-based models are proposed, objectifying the simulation of streamflow scenarios. In the first working paper, a periodic spatial copula model is proposed to simulate multivariate streamflow scenarios. The main contributions include periodic extension of the spatial vine copulas; a distinct reduction in the number of parameters; and the development of a multivariate nonlinear model for streamflow scenario generation that incorporates time dependence, spatial dependence, and seasonal variation, and accounts for the dimensionality of the problem (high number of hydroelectric power plants). In the second working paper, some modifications are made to the periodic spatial model, resulting in lower complexity without the loss of performance. In the third working paper, a methodology based on the vine copula is proposed to model the temporal dependence structures in a univariate periodic streamflow time series. Among the contributions, the construction of a nonlinear version of the periodic autoregressive model (PAR(p)) is highlighted. The possibility of modeling linear and nonlinear effects and the flexibility of modeling the monthly marginal distributions are highlighted as well. This model does not simulate negative values.

Page generated in 0.0432 seconds