• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2003
  • 1040
  • 236
  • 32
  • 13
  • 9
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 3442
  • 1935
  • 757
  • 664
  • 601
  • 534
  • 503
  • 493
  • 434
  • 361
  • 339
  • 334
  • 313
  • 305
  • 305
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Profilage métataxonomique par apprentissage machine du microbiote intestinal chez l'abeille mellifère au Canada

Bouslama, Sidki 02 February 2024 (has links)
Au Canada, les abeilles sont un élément essentiel au secteur de l'agriculture en participant, en plus de leur production annuelle de miel à la pollinisation de nombreux fruits, noix et légumes. Malheureusement, le nombre des abeilles est dangereusement en baisse depuis la dernière décennie. L'intérêt du sujet et la multiplication d'initiatives de recherche dans le domaine ont fait de l'abeille un organisme modèle, notamment dans la recherche sur la dynamique hôte-microbiote. Apis mellifera possède un microbiote très spécialisé qui confère à l'abeille un large éventail de fonctions bénéfiques, allant de l'immunité à la transformation du pollen et la digestion des carbohydrates. Ce projet avait donc pour objectif de trouver des biomarqueurs prédictifs de différents traits de performance zootechniques (e.g. prévalence d'agents pathogènes et parasites, productivité) des colonies d'abeilles à partir de la composition taxonomique du microbiote intestinal. Une approche par apprentissage machine a été privilégiée afin de contourner les limitations des méthodes classiques de traiter un grand nombre de variables. Les modèles de prédiction obtenus ont permis de prédire la majorité des variables à l'étude avec succès, soulignant le potentiel de cette méthodologie dans le domaine du suivi et de la prédiction de l'état de santé des colonies d'abeilles au Canada. / The European honey bee, Apis mellifera, is an essential contributor to agriculture in Canada through the economic value of the production of honey to the extensive pollination services of numerous fruits, nuts and vegetables. Unfortunately, yearly colony losses of honey bees have seen a sharp increase during the last decade. The increasing interest and research initiatives in understanding the source of this problem have turned Apis mellifera into a model organism for research, notably in the field of host-microbiome dynamics. A. mellifera possesses a highly specialized microbiota that provides a wide array of beneficial functions to its host, from immunity to pollen processing and transformation to the metabolism of carbohydrates. This work's goal is to use the intestinal microbiome in honey bee colonies in order to discover relevant bio-markers with the capability to predict key host health and productivity metrics by using a machine learning approach in order to bypass the traditional bottleneck that is posed by classical analysis methods when dealing with high multi-dimensional problems. The models obtained in this study have successfully allowed the prediction of most variables studied (notably honey production, weight loss and gain, varroa loads, etc..), thus demonstrating the potential of this methodology as a tool to track and predict the health and performance of honey bee colonies in Canada.
192

Approches basées sur l'apprentissage automatique pour l'anticipation de la qualité d'usinage de pièces métalliques

Megder, El Mehdi 02 February 2024 (has links)
Dans le domaine de l’usinage de pièces métalliques, l’usure des outils de coupe est un phénomène inévitable.Cette usure, bien qu’elle ne soit pas le seul facteur, se répercute dans la qualité des pièces fabriquées. Il est alors nécessaire de compenser cette usure en altérant la trajectoire des outils de coupe dans une machine à commande numérique. Nous évaluons différentes techniques d’apprentissage automatique afin d’estimer et de prévoir les dimensions des futures pièces usinées (et donc indirectement la compensation à apporter). Nous établissons une relation mathématique qui lie une variable de sortie, soit l’ensemble des mesures de la pièce produite, à un vecteur de variables d’entrées (historique des outils et des mesures). Nous proposons une démarche systématique pour évaluer la performance de différents modèles en contexte d’ajustement,d’interpolation et d’extrapolation. Les forêts aléatoires d’arbres décisionnels ont donné les meilleurs résultats. / Tool wear is an inevitable phenomenon in CNC manufacturing. This has a negative effect on the quality of the manufactured parts. Therefore, it is necessary to compensate the tool wear by altering the tool path in the CNC machines. We evaluate different machine learning techniques to estimate and predict the measurement / qualityof future workpieces. We establish the mathematical relation that links the output variable, corresponding to the workpiece measurements, to a vector of inputs variables (history of tools and measurements). We propose a systematic approach to evaluate the performance of different models regarding fitting, interpolation and extrapolation. Best results are obtained with random forests of decision trees.
193

Active thermography : application of deep learning to defect detection and evaluation

Ahmadi, Mohammad Hossein 13 December 2023 (has links)
La thermographie à phase pulsée (TPP) a été présentée comme une nouvelle technique robuste de thermographie infrarouge (TIR) pour les essais non destructifs (END). Elle utilise la transformée de Fourier discrète (TFD) sur les images thermiques obtenues après un chauffage flash de la surface avant d'un spécimen pour extraire les informations de délai de phase (ou phase). Les gammes de phase calcules (ou cartes de phase) sont utilises pour la visualisation des défauts dans de nombreux matériaux. Le contraste de température permet de détecter les défauts à partir des données thermographiques. Cependant, les images thermiques comportent généralement un niveau de bruit important et des arrière-plans non uniformes causés par un chauffage inégal et des réflexions environnementales. Par conséquent, il n'est pas facile de reconnaître efficacement les régions défectueuses. Dans ce travail, nous avons appliqué la technique LSTM (Long Short Term Memory) et des réseaux de neurones convolutifs (RNC) basés sur des modèles d'apprentissage profond (AP) à la détection des défauts et à la classification de la profondeur des défauts à partir de données d'images thermographiques. Nos résultats expérimentaux ont montré que l'architecture proposée basée sur l'AP a obtenu des scores de précision de 0.95 et 0.77 pour la classification des pixels sains et défectueux. En outre, les résultats expérimentaux ont montré que les techniques LSTM et RNC ont obtenu des précisions de 0.91 et 0.82 pour la classification de la profondeur des défauts, respectivement. Par conséquent, la technique LSTM a surpassé la technique RNC pour les cas de détection des défauts et de classification de la profondeur des défauts. / Pulse Phase Thermography (PPT) has been introduced as a novel robust Non-Destructive Testing (NDT) Infrared Thermography (IRT) technique. It employs Discrete Fourier Transform (DFT) to thermal images obtained following flash heating of the front surface of a specimen to extract the phase delay (or phase) information. The computed phase grams (or phase maps) are used for defect visualization in many materials. The temperature contrast enables defect detection based on thermographic data. However, thermal images usually involve significant measurement noise and non-uniform backgrounds caused by uneven heating and environmental reflections. As a result, it is not easy to recognize the defective regions efficiently. In this work, we applied Long Short-Term Memory (LSTM) and Convolutions Neural Networks works (CNNs) based on deep learning (DL) models to defect detection and defect depth classification from thermographic image data. Our experimental results showed that the proposed DL-based architecture achieved 0.95 and 0.77 accuracy scores for sound and defected pixels classification. Furthermore, the experimental results illustrated that LSTM and CNN techniques achieved 0.91 and 0.82 accuracies for defect-depth classification, respectively. Consequently, the LSTM technique overcame the CNNs technique for defect detection and defect-depth classification cases.
194

Defect detection in infrared thermography by deep learning algorithms

Fang, Qiang 27 January 2024 (has links)
L'évaluation non destructive (END) est un domaine permettant d'identifier tous les types de dommages structurels dans un objet d'intérêt sans appliquer de dommages et de modifications permanents. Ce domaine fait l'objet de recherches intensives depuis de nombreuses années. La thermographie infrarouge (IR) est l'une des technologies d'évaluation non destructive qui permet d'inspecter, de caractériser et d'analyser les défauts sur la base d'images infrarouges (séquences) provenant de l'enregistrement de l'émission et de la réflexion de la lumière infrarouge afin d'évaluer les objets non autochauffants pour le contrôle de la qualité et l'assurance de la sécurité. Ces dernières années, le domaine de l'apprentissage profond de l'intelligence artificielle a fait des progrès remarquables dans les applications de traitement d'images. Ce domaine a montré sa capacité à surmonter la plupart des inconvénients des autres approches existantes auparavant dans un grand nombre d'applications. Cependant, en raison de l'insuffisance des données d'entraînement, les algorithmes d'apprentissage profond restent encore inexplorés, et seules quelques publications font état de leur application à l'évaluation non destructive de la thermographie (TNDE). Les algorithmes d'apprentissage profond intelligents et hautement automatisés pourraient être couplés à la thermographie infrarouge pour identifier les défauts (dommages) dans les composites, l'acier, etc. avec une confiance et une précision élevée. Parmi les sujets du domaine de recherche TNDE, les techniques d'apprentissage automatique supervisées et non supervisées sont les tâches les plus innovantes et les plus difficiles pour l'analyse de la détection des défauts. Dans ce projet, nous construisons des cadres intégrés pour le traitement des données brutes de la thermographie infrarouge à l'aide d'algorithmes d'apprentissage profond et les points forts des méthodologies proposées sont les suivants: 1. Identification et segmentation automatique des défauts par des algorithmes d'apprentissage profond en thermographie infrarouge. Les réseaux neuronaux convolutifs (CNN) pré-entraînés sont introduits pour capturer les caractéristiques des défauts dans les images thermiques infrarouges afin de mettre en œuvre des modèles basés sur les CNN pour la détection des défauts structurels dans les échantillons composés de matériaux composites (diagnostic des défauts). Plusieurs alternatives de CNNs profonds pour la détection de défauts dans la thermographie infrarouge. Les comparaisons de performance de la détection et de la segmentation automatique des défauts dans la thermographie infrarouge en utilisant différentes méthodes de détection par apprentissage profond : (i) segmentation d'instance (Center-mask ; Mask-RCNN) ; (ii) détection d’objet (Yolo-v3 ; Faster-RCNN) ; (iii) segmentation sémantique (Unet ; Res-unet); 2. Technique d'augmentation des données par la génération de données synthétiques pour réduire le coût des dépenses élevées associées à la collecte de données infrarouges originales dans les composites (composants d'aéronefs.) afin d'enrichir les données de formation pour l'apprentissage des caractéristiques dans TNDE; 3. Le réseau antagoniste génératif (GAN convolutif profond et GAN de Wasserstein) est introduit dans la thermographie infrarouge associée à la thermographie partielle des moindres carrés (PLST) (réseau PLS-GANs) pour l'extraction des caractéristiques visibles des défauts et l'amélioration de la visibilité des défauts pour éliminer le bruit dans la thermographie pulsée; 4. Estimation automatique de la profondeur des défauts (question de la caractérisation) à partir de données infrarouges simulées en utilisant un réseau neuronal récurrent simplifié : Gate Recurrent Unit (GRU) à travers l'apprentissage supervisé par régression. / Non-destructive evaluation (NDE) is a field to identify all types of structural damage in an object of interest without applying any permanent damage and modification. This field has been intensively investigated for many years. The infrared thermography (IR) is one of NDE technology through inspecting, characterize and analyzing defects based on the infrared images (sequences) from the recordation of infrared light emission and reflection to evaluate non-self-heating objects for quality control and safety assurance. In recent years, the deep learning field of artificial intelligence has made remarkable progress in image processing applications. This field has shown its ability to overcome most of the disadvantages in other approaches existing previously in a great number of applications. Whereas due to the insufficient training data, deep learning algorithms still remain unexplored, and only few publications involving the application of it for thermography nondestructive evaluation (TNDE). The intelligent and highly automated deep learning algorithms could be coupled with infrared thermography to identify the defect (damages) in composites, steel, etc. with high confidence and accuracy. Among the topics in the TNDE research field, the supervised and unsupervised machine learning techniques both are the most innovative and challenging tasks for defect detection analysis. In this project, we construct integrated frameworks for processing raw data from infrared thermography using deep learning algorithms and highlight of the methodologies proposed include the following: 1. Automatic defect identification and segmentation by deep learning algorithms in infrared thermography. The pre-trained convolutional neural networks (CNNs) are introduced to capture defect feature in infrared thermal images to implement CNNs based models for the detection of structural defects in samples made of composite materials (fault diagnosis). Several alternatives of deep CNNs for the detection of defects in the Infrared thermography. The comparisons of performance of the automatic defect detection and segmentation in infrared thermography using different deep learning detection methods: (i) instance segmentation (Center-mask; Mask-RCNN); (ii) objective location (Yolo-v3; Faster-RCNN); (iii) semantic segmentation (Unet; Res-unet); 2. Data augmentation technique through synthetic data generation to reduce the cost of high expense associated with the collection of original infrared data in the composites (aircraft components.) to enrich training data for feature learning in TNDE; 3. The generative adversarial network (Deep convolutional GAN and Wasserstein GAN) is introduced to the infrared thermography associated with partial least square thermography (PLST) (PLS-GANs network) for visible feature extraction of defects and enhancement of the visibility of defects to remove noise in Pulsed thermography; 4. Automatic defect depth estimation (Characterization issue) from simulated infrared data using a simplified recurrent neural network: Gate Recurrent Unit (GRU) through the regression supervised learning.
195

L'outil RBAC et la prédiction de la récidive criminelle : une analyse par l'intelligence artificielle

Bacon, Félix 04 June 2024 (has links)
L'objectif de la recherche est de fournir un cadre d'analyse supplémentaire aux commissaires à la libération conditionnelle de façon à mieux prédire la probabilité de récidives au Québec. Dans la recherche, nous travaillons avec plusieurs modèles d'intelligence artificielle dans le but de classer les détenus dans les prisons Québécoises. La classification est binaire, soit nous prédisons que le détenu a une probabilité élevée de commettre une récidive ; soit le cas contraire. Les évaluations réalisées sur les prisonniers sont au cœur de la recherche. Les documents remplis par les évaluateurs permettent d'établir un score basé sur la réponse aux questions. Au Québec, le nom de cette évaluation est le RBAC-PCQ et c'est celle-ci qui remplace son prédécesseur le LS-CMI. À l'aide de celle-ci, nous avons programmé plusieurs algorithmes ayant comme objectif de classifier les détenus. Grâce aux informations qui nous étaient fournies, nous avons commencé par établir la règle de décision générale permettant de reproduire la situation actuelle du Québec et nous l'avons ensuite comparé avec un modèle logistique de régression. Les résultats à ce stade démontraient une nette amélioration de la classification des détenus. Nous avons ensuite développé plusieurs modèles d'apprentissage machine afin d'approfondir la qualité de classification des détenus. Au final, l'analyse des modèles permet d'arriver à la conclusion que seulement 6 questions sont importantes pour établir la probabilité de récidive au Québec.
196

Structures de corrélation partiellement échangeables : inférence et apprentissage automatique

Perreault, Samuel 27 January 2024 (has links)
No description available.
197

La restauration d'image non-supervisée avec StyleGAN

Poirier-Ginter, Yohan 20 November 2023 (has links)
Thèse ou mémoire avec insertion d’articles / La restauration d'image est un problème mal posé. Des images pourtant différentes peuvent devenir identiques une fois dégradées. Pour cette raison, les approches établies exploitent des connaissances préalables sur le processus de dégradation en question ou sur la distribution des données. Alors que les techniques traditionnelles de restauration d'image sont basées sur la compréhension mathématique de dégradations spécifiques, les méthodes de pointe basées sur l'apprentissage profond supervisé exploitent de grands ensembles de données d'images dégradées pour apprendre automatiquement la restauration nécessaire. À ce titre, ces méthodes offrent une grande flexibilité, au prix d'un long processus d'entraînement. Bien que ces méthodes aient une grande efficacité dans le cas général, elles ne peuvent pas incorporer d'a priori supplémentaire sans réentraînement. Par exemple, modifier la distribution des images pour un ensemble plus restreint, ou encore modifier les niveaux de dégradations acceptés nécessite le réentraînement. En particulier, il est impossible combiner des modèles adaptés et entraînés pour des dégradations distinctes sans réentrainer. Dans ce travail, nous développons une nouvelle technique de restauration d'image non-supervisée basée sur l'inversion StyleGAN. StyleGAN est un modèle génératif très populaire qui génère des images aléatoires réalistes à partir de codes latents ; son utilisation pour la restauration d'images nécessite d'inverser ce processus. Notre première contribution consiste en une nouvelle méthode qui améliore l'inversion StyleGAN en introduisant des paramètres libres supplémentaires. Dans un second temps, nous adaptons cette technique à la restauration d'image non supervisée. Cette technique utilise une approximation différentiable à la dégradation appliquée pour trouver, dans la distribution d'un StyleGAN pré-entraîné, une image nettoyée qui correspond bien à l'image dégradée. Contrairement aux travaux précédents et concurrents, notre méthode est robuste, en ce sens qu'elle utilise les mêmes hyperparamètres pour toutes les tâches et tous les niveaux de dégradations. Grâce à cette robustesse, il devient possible de combiner facilement différents modèles de dégradation, de façon à restaurer des dégradations combinées. / Image restoration is an ill-posed problem, where multiple solutions exists. Because of this, effective approches exploit prior knowledge of the image degradation process or the data distribution. While traditional image restoration techniques are based on mathematical understanding of specific image degradations, state of the art methods based on supervised deep learning leverage large datasets of degraded images to learn restoration automatically. As such, they offer great flexibility, at the cost of a lengthy training processes. While these methods have great efficacy in the general case, they cannot incorporate additional priors without retraining. For instance, specializing the dataset to a different domain requires retraining, modifying the levels of degradation requires retraining, and methods which are designed for specific degrdations cannot be combined together. In this work, we develop a novel technique for unsupervised image restoration based on StyleGAN inversion. StyleGAN is a very popular generative model which generates realistic random images from latent codes; its use in image restoration requires inverting this process. Our first contribution consists of a new method that improves StyleGAN inversion by introducing additional free parameters. As a second contribution, we adapt this technique to unsupervised image restoration. This technique uses a differentiable approximation of the image degradation to search the distribution of a pretrained StyleGAN. In contrast to previous and concurrent works, our method is robust, in that it uses the same hyperparameters for all tasks and all levels of degradations. As such, it can effectively handle new combinations of tasks, and restore multiple different degradations, without any training.
198

Adaptability and extensibility of deep neural networks

Pagé Fortin, Mathieu 28 June 2024 (has links)
L'apprentissage profond a considérablement gagné en popularité au cours de la dernière décennie grâce à sa capacité à développer des modèles puissants qui apprennent directement à partir de données non structurées. Cette approche a été appliquée avec succès à divers domaines tels que le traitement du langage naturel, la vision par ordinateur et le traitement des signaux, et le rythme des progrès réalisés par la recherche académique et industrielle ne cesse de s'accélérer. Cependant, la majorité des recherches suppose la disponibilité de grands ensembles de données d'entraînement statiques. Par exemple, de nombreuses techniques sont conçues pour améliorer les capacités de généralisation des modèles d'apprentissage profond en utilisant des bases de données comme MS-COCO qui contient environ 300K images, ImageNet avec environ 1,5M d'exemples, et Visual Genome avec environ 3,8M d'instances d'objets. Or, récolter et annoter de tels ensembles de données peut être trop coûteux pour de nombreuses applications réelles. De plus, il est généralement supposé que l'entraînement peut être effectué en une seule étape, considérant ainsi que toutes les classes sont disponibles simultanément. Cela diffère d'applications réelles où les cas d'utilisation peuvent évoluer pour inclure de nouvelles classes au fil du temps, induisant ainsi la nécessité d'adapter continuellement les modèles existants, et faisant ainsi de l'apprentissage continuel. Dans cette thèse, nous visons à contribuer à l'*adaptabilité* et à l'*extensibilité* des réseaux de neurones profonds par le biais de l'apprentissage à partir de peu d'exemples et de l'apprentissage continuel. Plus précisément, nous proposons une méthode d'apprentissage qui exploite des relations contextuelles et des représentations multimodales pour former de meilleurs prototypes de classe en se basant sur des connaissances préalables, permettant l'*adaptation* à de nouvelles tâches avec seulement quelques exemples. De plus, nous contribuons à l'apprentissage continuel de classes, qui vise à permettre aux modèles d'apprentissage profond d'*étendre* leurs connaissances en intégrant de nouveaux concepts sans perdre la capacité de résoudre les tâches précédemment apprises. Contrairement à la majorité des travaux précédents qui ont exploré l'apprentissage continuel dans un contexte de classification d'images sur des bases de données simples (p. ex. MNIST et CIFAR), nos méthodes contribuent à l'apprentissage continuel de la segmentation sémantique, la détection d'objets et la segmentation d'instances, qui sont des problèmes plus complexes mais aussi plus applicatifs. Pour la segmentation sémantique continuelle, nous proposons un module d'apprentissage faiblement supervisé afin d'aborder les problèmes de dérive de l'arrière-plan (*background shift*) et des coûts élevés d'annotation. Nous introduisons également deux variantes d'un mécanisme de répétition qui permet de rejouer des régions d'images ou des caractéristiques intermédiaires sous la forme d'une technique d'augmentation de données. Nous explorons ensuite l'apprentissage continuel de la détection d'objets et de la segmentation d'instances en développant une architecture dynamique et une nouvelle méthode de distillation des connaissances qui augmente la plasticité tout en préservant une bonne stabilité. Finalement, nous étudions l'apprentissage continuel de la détection d'objets dans le contexte d'applications agricoles telles que la détection de plantes et de maladies. Pour ce faire, nous adaptons deux bases de données publiques pour simuler des scénarios d'apprentissage continuel et nous comparons diverses méthodes, introduisant ainsi deux scénarios experimentaux de référence pour étudier la vision numérique appliquée à des problèmes agricoles. Ensemble, ces contributions abordent plusieurs défis en lien avec l'apprentissage à partir de peu d'exemples et avec l'apprentissage continuel, faisant ainsi progresser le développement de modèles adaptables capables d'élargir progressivement leur base de connaissances au fil du temps. De plus, nous mettons un accent particulier sur l'étude de ces problèmes dans des configurations expérimentales impliquant des scènes complexes, qui sont plus représentatives des applications réelles déployées dans des environnements de production. / Deep learning has gained tremendous popularity in the last decade thanks to its ability to develop powerful models directly by learning from unstructured data. It has been successfully applied to various domains such as natural language processing, computer vision and signal processing, and the rate of progress made by academic and industrial research is still increasing. However, the majority of research assumes the availability of large, static training datasets. For instance, techniques are often designed to improve the generalization capabilities of deep learning models using datasets like MS-COCO with approximately 300K images, ImageNet with around 1.5M examples, and Visual Genome with roughly 3.8M object instances. Gathering and annotating such large datasets can be too costly for many real-world applications. Moreover, it is generally assumed that training is performed in a single step, thereby considering that all classes are available simultaneously. This differs from real applications where use cases can evolve to include novel classes, thus inducing the necessity to continuously adapt existing models and thereby performing continual learning. In this thesis, we aim to contribute to the *adaptability* and *extensibility* of deep neural networks through learning from few examples and continual learning. Specifically, we propose a few-shot learning method which leverages contextual relations and multimodal representations to learn better class prototypes, allowing to *adapt* to novel tasks with only a few examples. Moreover, we contribute to continual learning, aiming to allow deep learning models to *extend* their knowledge by learning new classes without loosing the ability to solve previously learned tasks. Contrarily to the majority of previous work which explores continual image classification on simple datasets (e.g. MNIST and CIFAR), our methods contribute to semantic segmentation, object detection and instance segmentation, which are more complex and practical problems. For continual semantic segmentation, we propose a weakly-supervised learning module to address the problems of background shift and annotation costs. We also introduce two variants of a rehearsal mechanism that can replay image patches or intermediate features in the form of a data augmentation technique. We then explore continual object detection and continual instance segmentation by developing a dynamic architecture and a novel knowledge distillation method which increases plasticity while ensuring stability. Finally, we experiment class-incremental object detection within the context of agricultural applications such as plant and disease detection. For that, we adapt two public datasets to simulate continual learning scenarios and we compare various continual and non-continual learning methods, thereby introducing a novel benchmark to study agricultural problems. Together, these contributions address several challenges of few-shot learning and continual learning, thus advancing the development of adaptable models capable of gradually expanding their knowledge base over time. Moreover, we have put a particular emphasis to study these problems within experimental setups that involve complex scenes, which are more representative of real applications as deployed in production environments.
199

Customer profitability forecasting using fair boosting : an application to the insurance industry

St-Jean, Alex 27 January 2024 (has links)
La prévision de la profitabilité du client, ainsi que la tarification, sont des pièces centrales dans le monde des sciences actuarielles. En utilisant des données sur les historiques des clients et en optimisant des modèles statistiques, les actuaires peuvent prévoir, dans une certaine mesure, le montant qu’un client réclamera durant une certaine période. Cependant, ces modèles utilisent souvent des données sensibles reliées au client qui sont considérées comme étant des facteurs de risque très importants dans la prédiction de pertes futures. Ceci est considéré comme étant légal dans plusieurs jurisdictions tant que leur utilisation est supportée par des données actuarielles, car ces attributs permettent aux clients d’obtenir une prime plus précise. Toutefois, comme soulevé dans la littérature récente en apprentissage machine, ces modèles peuvent cacher des biais qui les rendent discriminants envers certains groupes. Dans ce mémoire, nous proposons un modèle de prévision de la profitabilité du client utilisant des avancées récentes provenant du domaine de l’apprentissage machine pour assurer que ces algorithmes ne discriminent pas disproportionnellement envers certains sous-groupes faisant partie de l’intersection de plusieurs attributs protégés, tel que l’âge, la race, la religion et l’état civil. En d’autres mots, nous prédisons équitablement la prime théorique de n’importe quel client en combinant l’état de l’art en prédiction de pertes en assurance et appliquant certaines contraintes d’équité sur des modèles de régression. Suite à l’exécution de l’estimation de la profitabilité du client sur plusieurs jeux de données réels, les résultats obtenus de l’approche proposée sont plus précis que les modèles utilisés traditionnellement pour cette tâche, tout en satisfaisant des contraintes d’équité. Ceci montre que cette méthode est viable et peut être utilisée dans des scénarios concrets pour offrir des primes précises et équitables aux clients. Additionnellement, notre modèle, ainsi que notre application de contraintes d’équité, s’adapte facilement à l’utilisation d’un grand jeu de données qui contiennent plusieurs sous-groupes. Ceci peut être considérable dans le cas où un critère d’équité intersectionnel doit être respecté. Finalement, nous notons les différences entre l’équité actuarielle et les définitions d’équité provenant du monde de l’apprentissage machine, ainsi que les compromis reliés à ceux-ci. / Customer profitability forecasting, along with ratemaking, are central pieces in the world of actuarial science. By using historical data and by optimising statistical models, actuaries can predict whether a client with certain liabilities will claim any loss and what amount will be claimed inside a defined policy period. However, these models often use sensitive attributesrelated to the customer that are considered to be crucial risk factors to consider in predicting future losses. This is considered legal in many jurisdictions, as long as their use is backedby actuarial data, as these attributes give a more accurate premium to clients. Nonetheless,as it has been noted in recent machine learning literature, models can hide biases that makethem discriminate against certain groups. In this thesis, we propose a customer profitability forecasting model that uses recent advancements in the domain of machine learning to ensurethat these algorithms do not discriminate disproportionately on a subgroup of any intersectionof protected attributes, such as age, gender, race, religion and marital status. In other words,we fairly predict the theoretical premium of any client by combining state-of-the-art methodsin insurance loss prediction and the application of fairness constraints on regression models. After performing customer profitability estimation on multiple real world datasets, it is shownthat the proposed approach outperforms traditional models usually used for this task, whilealso satisfying fairness constraints. This shows that this method is viable and can be used inreal world scenarios to offer fair and accurate premiums to clients. Additionally, our model andour application of fairness constraints scale easily when using large datasets that contain many subgroups. This can be substantial in the case of satisfying an intersectional fairness criterion.Finally, we highlight the differences between actuarial fairness and fairness definitions in theworld of machine learning, along with its related trade offs.
200

Suivi d'objet en 6 degrés de liberté avec caméra événementielle

Dubeau, Etienne 22 February 2024 (has links)
Actuellement, les méthodes de suivi d'objet utilisent majoritairement un capteur conventionnel doté d'une fréquence de capture limitée, par exemple : une caméra couleur RGB ou un capteur RGB-D qui fournit également la profondeur à chaque pixel. Ceux-ci ne sont pas idéaux lorsque l'objet se déplace à grande vitesse car des images floues sont produites. Augmenter la fréquence de capture est la solution naïve, mais cela a comme effet d'augmenter le nombre de données capturées et la complexité d'exécution des algorithmes. Ceci cause particulièrement problème dans un contexte de réalité augmentée qui utilise des systèmes embarqués ou mobiles qui ont des capacités de calcul limitées. D'un autre côté, la popularité des capteurs événementiels, qui mesurent les variations d'intensité dans la scène, est en augmentation dû à leur faible puissance d'utilisation, leur faible latence, leur capacité d'acquisition à grande vitesse et le fait qu'ils minimisent le nombre de données capturées. Ce mémoire présente donc une méthode d'apprentissage profond de suivi d'objet à grande vitesse en six degrés de liberté en combinant deux capteurs distincts, soit un capteur RGB-D et une caméra événementielle. Pour permettre l'utilisation des capteurs conjointement, une méthode de calibration temporelle et spatiale est détaillée afin de mettre en registre les images capturées par les deux caméras. Par la suite, une méthode d'apprentissage profond de suivi d'objet est présentée. Celle-ci utilise uniquement des données synthétiques à l'entrainement et utilise les deux capteurs pour améliorer les performances de suivi d'objet en 6DOF, surtout dans les scénarios à grande vitesse. Pour terminer, un jeu de données RGB-D-E est capturé et annoté à la position réelle pour chaque trame. Ce jeu de données est accessible publiquement et peut être utilisé pour quantifier les performances de méthodes futures.

Page generated in 0.0642 seconds