• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 80
  • 42
  • 9
  • 7
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 305
  • 305
  • 90
  • 37
  • 32
  • 31
  • 30
  • 22
  • 20
  • 20
  • 19
  • 19
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Giant Molecular Shape Amphiphiles Based on Polyhedral Oligomeric Silsesquioxanes: Molecular Design, "Click" Synthesis and Self-Assembly

Li, Yiwen 29 August 2013 (has links)
No description available.
142

SURFACE FUNCTIONALIZATION OF MELT COEXTRUDED FIBERS FOR BIOMEDICAL APPLICATIONS

Kim, Si Eun 08 February 2017 (has links)
No description available.
143

EFFECTS OF POLYMER COMPOSITIONS AND SCAFFOLD SURFACE FUNCTIONALIZATION ON WOUND HEALING

Tseng, Yen-Ming 03 August 2022 (has links)
No description available.
144

Synthesis, Characterization and Evaluation of Central Nervous System Targeted Metallocarborane Complexes

Louie, Anika S. 10 1900 (has links)
<p>A series of new methodologies to link a neurotransmitter receptor targeting vector (WAY) to carboranes and the preparation of the corresponding metallocarboranes (M = Re, <sup>99m</sup>Tc) as a new class of organometallic CNS imaging probes is described. WAY-carboranes (<strong>5</strong>, <strong>6</strong>, <strong>16</strong>) and the corresponding metallocarboranes (M = Re (<strong>12</strong>, <strong>13</strong>, <strong>22a</strong>, <strong>22b</strong>), <sup>99m</sup>Tc (<strong>14a</strong>, <strong>15</strong>, <strong>23</strong>)) were synthesized in yields ranging from 10-95%. The first observed 3,1,2 versus 2,1,8 rhenacarborane isomerization process was discovered for <strong>12</strong> where isomerization and complexation occurred simultaneously. Re-carboranes <strong>22a</strong> and <strong>22b</strong> had similar carbon-carbon cage configuration where electronic effects was the driving force behind isomerization.</p> <p>The lipophilicities of <sup>99m</sup>Tc-carboranes (<strong>14a</strong>, <strong>15</strong>, <strong>23)</strong> were within the ideal range to cross the BBB (log P = 2.4-2.6). <em>In vitro</em> binding data showed that <strong>22b</strong> has high affinity for alpha-adrenergic receptors (K<sub>i</sub> = 17-39 nM) resulting in the first organometallic complex to effectively bind to this class of receptors. SPECT images of <strong>14a</strong> in rats showed no brain uptake, while quantitative biodistribution studies indicated modest, non-negligible brain uptake in the hypothalamus region.</p> <p>The neutral [M(CO)<sub>2</sub>(NO)(C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>R)] analogues (<strong>30</strong>, <strong>34</strong>, <strong>37</strong>) were prepared to address the limited brain uptake of the [M(CO)<sub>3</sub>(C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>R)]<sup>-</sup> complexes. Reactivity differences between Re and <sup>99m</sup>Tc were noted during nitrosation conditions where the initial products from the reaction led to nitration of the phenyl group in addition to nitrosation of the metal core. The fluorescence properties of <strong>29</strong> were measured.</p> <p>Low yields and multistep syntheses associated with the preparation of substituted carborane led to the development of a carborane-alkyne platform. Alkyne-carboranes (<strong>53</strong>-<strong>55</strong>) were developed and conjugated to WAY-azide (<strong>46</strong>) using “click” chemistry. The metallocarboranes (M = Re (<strong>69</strong>-<strong>71</strong>), <sup>99m</sup>Tc (<strong>72</strong>-<strong>74</strong>)) were generated in yields ranging from 45-71%.</p> / Doctor of Philosophy (PhD)
145

Addressing Antibiotic Resistance: The Discovery of Novel Ketolide Antibiotics Through Structure Based Design and In Situ Click Chemistry

Glassford, Ian Michael January 2016 (has links)
Antibiotic resistance has become and will continue to be a major medical issue of the 21st century. If not addressed, the potential for a post-antibiotic era could become a reality, one that the world has not been familiar with since the early 1900’s. Multidrug-resistant hospital-acquired bacterial infections already account for close to 2 million cases and 23,000 deaths in the United States, along with 20 billion dollars of additional medical spending each year. The CDC released a report in 2013 regarding the seriousness of antibiotic resistance and providing a snapshot of costs and mortality rates of the most serious antibiotic resistant bacteria, which includes 17 drug resistant bacteria, such as carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococcus and Staphylococcus aureus, and multidrug-resistant Acinetobacter and Pseudomonas aeruginosa. The development of antibiotic resistance is part of bacteria’s normal evolutionary process and thus impossible to completely stop. To ensure a future where resistant bacteria do not run rampant throughout society, there is a great need for new antibiotics and accordingly, methods to facilitate their discovery Macrolides are a class of antibiotics that target the bacterial ribosome. Since their discovery in the 1950’s medicinal chemistry has created semi-synthetic analogues of natural product macrolides to address poor pharmacokinetics and resistance. Modern X-Ray crystallography has allowed the chemist access to high resolution images of the bacterial ribosome bound to antibiotics including macrolides which has ushered in an era of structure-based design of novel antibiotics. These crystal structures suggest that the C-4 methyl group of third generation ketolide antibiotic telithromycin can sterically clash with a mutated rRNA residue causing loss of binding and providing a structural basis for resistance. The Andrade lab hypothesized that the replacement of this methyl group with hydrogen would alleviate the steric clash and allow the antibiotic to retain activity. To this end, the Andrade lab set out on a synthetic program to synthesize four desmethyl analogues of telithromycin by total synthesis that would directly test the steric clash hypothesis and also provide structure-activity relationships about these methyl groups which have not been assessed in the past. Following will contain highlights of the total synthesis of (-)-4,8,10-didesmethyl telithromycin, (-)-4,10-didesmethyl telithromycin, and (-)-4,8-desmethyl telithromycin and my journey toward the total synthesis of (-)-4-desmethyl telithromycin Traditional combinatorial chemistry uses chemical synthesis to make all possible molecules from various fragments. These molecules then need to be purified, characterized, and tested against the biological target of interest. While high-throughput assay technologies (i.e., automation) has streamlined this process to some extent, the process remains expensive when considering the costs of labor, reagents, and solvent to synthesize, purify, and characterize all library members. Unlike traditional combinatorial chemistry, in situ click chemistry directly employs the macromolecular target to template and synthesize its own inhibitor. In situ click chemistry makes use of the Huisgen cycloaddition of alkyne and azides to form 1,2,3-triazoles, which normally reacts slowly at room temperature in the absence of a catalyst. If azide and alkyne pairs can come together in a target binding pocket the activation energy of the reaction can be lowered and products detected by LC-MS. Compounds found in this way generally show tighter binding than the individual fragments. Described in the second part of this dissertation is the development of the first in situ click methodology targeting the bacterial ribosome. Using the triazole containing third generation ketolide solithromycin as a template we were able to successfully show that in situ click chemistry was able to predict the tightest binding compounds. / Chemistry
146

High Throughput Screening of Nanoparticle Flotation Collectors

Abarca, Carla January 2017 (has links)
Carla Abarca Ph.D. Thesis / The selective separation of valuable minerals by froth flotation is a critical unit operation in mineral processing. Froth flotation is based on the ability of chemical reagents, called collectors, to selectively lower the surface energy of valuable mineral particles, facilitating attachment of the modified mineral particles to air bubbles in the flotation cell. The mineral laden bubbles rise to the surface forming a froth phase that can be isolated. Novel cationic polystyrene nanoparticle collectors have been developed recently to be used as effective flotation collectors, aiming to recover challenging nickel sulfide ores that respond poorly to conventional molecular flotation collectors. However, optimizing nanoparticle flotation collectors is a challenge. An effective nanoparticle collector candidate should meet three requirements: (1) it should be colloidally stable in the flotation media; (2) it should be hydrophobic enough to change the mineral surface and induce an air bubble-mineral particle attachment; and (3) specifically and strongly bind to metal-rich minerals. Producing nanoparticles that are simultaneously colloidally stable and sufficiently hydrophobic presents a problematic task. Thus, a delicate balance of nanoparticle properties is required for commercially viable nanoparticle collectors. This thesis presents a promising approach for discovering and characterizing novel nanoparticle collectors by using high throughput screening techniques. Developed was a workflow for fast fabrication and testing of nanoparticle candidates, including: (1) parallel production of large nanoparticle libraries covering a range of surface chemistries, (2) a high throughput colloidal stability assay to determine whether a nanoparticle type is stable in flotation conditions; (3) an automated contact angle assay to reject nanoparticles that are not hydrophobic enough to induce efficient bubble-particle attachment, and; (4) a laboratory flotation test in sodium carbonate (pH~10) with the best nanoparticle candidates. The automated colloidal stability assay was based on the optical characterization of diluted nanoparticle dispersions in multiwell plates, yielding critical coagulation concentrations (CCCs) of sodium carbonate. To pass this screening test, the CCC of candidate nanoparticles must be greater than the effective carbonate concentration in commercial flotation cells. Since the nanoparticle size affects the intrinsic light scattering properties of the nanoparticles, two routes were developed. The colloid stability assay was suitable for nanoparticles ranging between 50 nm and 500 nm, since nanoparticle size. The automated contact angle assay used a miniature 16-well plate format where flat glass slides were exposed to 200 μL nanoparticle dispersions. The cationic nanoparticles formed a saturated adsorbed monolayer on the glass, and after rinsing and drying, the water contact angle was automatically measured. Effective nanoparticle candidates had contact angles greater than 50 degrees, a criterion developed with model experiments. During the development of the automated workflow platform, a series of nanoparticles with methyl-ended PEG-methacrylate monomers were prepared. Although the PEG chains greatly enhanced colloidal stability, the particles were too hydrophilic to be effective collectors. Interestingly, nanoparticles with long PEG chains acted as froth modifiers, giving wetter and more robust foams as well as increased entrainment of materials that did not adhere to bubbles. Conventional laboratory scale latex synthesis methodologies are far too inefficient to generate large library of candidate nanoparticles. Instead, we started with a few parent nanoparticle types and then used Click chemistry to generate a large range of surface chemistries. Specifically copper-mediated azide alkyne cycloaddition reaction was used to functionalize the surface of azide nanoparticles with different chemical groups, ranging from hydrophilic amine-terminated PEG chains, to hydrophobic hexane-terminated materials. The Click library exhibited an extensive range of critical coagulation concentrations and contact angle values. For example, for a given parent azide nanoparticle, the contact angles ranged from 62 to 101 degrees, depending upon the density and type of click reagent. A novel paper chromatographic method was developed for the quantitative determination surface azide. This assay was critical for determining the surface density of functional groups from the click reactions. Overall, high throughput screening techniques were designed and applied to the development of nanoparticle collectors for froth flotation. Automated screening assays of critical coagulation concentration and contact angle proved to be effective in obtaining flotation domain maps, and finding the most promising nanoparticle collectors for froth flotation. I believe the work in this thesis is one of the first reported uses of high throughput methodologies for the development of mineral flotation reagents. / Thesis / Doctor of Philosophy (PhD) / Novel cationic polystyrene nanoparticle collectors have been developed to be used as effective flotation collectors, aiming to recover challenging nickel sulfide ores that respond poorly to conventional molecular flotation collectors. However, optimizing nanoparticle flotation collectors is a challenge. This thesis presents a promising approach for discovering and characterizing novel nanoparticle collectors by using high throughput screening techniques and click chemistry. Development of nanoparticle libraries and automated screening assays of critical coagulation concentration and contact angle proved to be effective in obtaining flotation domain maps, and finding the most promising nanoparticle collectors for froth flotation.
147

Amphiphilic block copolymer self-assemblies of poly(NVP)-b-poly(MDO-co-vinyl esters) : tunable dimensions and functionalities

Hedir, G.G., Pitto-Barry, Anaïs, Dove, A.P., O'Reilly, R.K. 10 October 2015 (has links)
No / Functional, degradable polymers were synthesized via the copolymerization of vinyl acetate (VAc) and 2-methylene-1,3-dioxepane (MDO) using a macro-xanthate CTA, poly(N-vinylpyrrolidone), resulting in the formation of amphiphilic block copolymers of poly(NVP)-b-poly(MDO-co-VAc). The behavior of the block copolymers in water was investigated and resulted in the formation of self-assembled nanoparticles containing a hydrophobic core and a hydrophilic corona. The size of the resultant nanoparticles was able to be tuned with variation of the hydrophilic and hydrophobic segments of the core and corona by changing the incorporation of the macro-CTA as well as the monomer composition in the copolymers, as observed by Dynamic Light Scattering, Static Light Scattering, and Transmission Electron Microscopy analyses. The concept was further applied to a VAc derivative monomer, vinyl bromobutanoate, to incorporate further functionalities such as fluorescent dithiomaleimide groups throughout the polymer backbone using azidation and “click” chemistry as postpolymerization tools to create fluorescently labeled nanoparticles. / University of Warwick, BP, The Royal Society
148

DEVELOPMENT OF CLICK HYDROGEL MODELS TO STUDY PANCREATIC CANCER CELL FATE

Chun-Yi Chang (19207171) 27 July 2024 (has links)
<p dir="ltr">PDAC, the most common type of pancreatic cancer, is a highly metastatic cancer that has a low survival rate. It is histologically characterized by a thick desmoplastic stroma. Counterintuitively, PCCs can still manage to survive in such a restrictive environment and even metastasize to distant organs. Over the years, efforts have been made to find out the mechanisms underlying these perplexing behaviors. However, questions about the role of ECM accumulation and enhanced stiffness in PCC dissemination remained unanswered. In this dissertation, we aim to advance the material design for tumor modeling, and propose an explanation for the malignant cell behavior in the PDAC TME. This is achieved through the use of hydrogel-based tumor models that recapitulate the elevated stiffness of the tumor tissue. Specifically, hydrogel stiffness was tuned to mimic the PDAC TME to understand how PCCs and CAFs respond to various substrate stiffnesses temporally. Next, we employ bio-orthogonal click chemistries to create hydrogels with on-demand stiffening capabilities, as well as hyaluronic acid deposition in the hydrogel, to investigate the effect of dynamic change in matrix stiffness and composition on PDAC cells and CAFs. Lastly, by leveraging thiol-norbornene, aldehyde-hydrazide, and tetrazine-norbornene click chemistries, we created a microporous hydrogel system with a conformation that combines both the advantage of 3D cell culture and the non-restricting nature of 2D cell culture. Additionally, the system allows the application of modularized user-defined factors, including, but not limited to stiffness and HA deposition to the system. Stiff gel in 2D facilitated cell spreading of Pa03C in the presence of CAF. Despite being more restrictive on cell spreading, stiff gelatin gel in 3D induced cytokines that promote matrix remodeling and spreading cell morphology can be restored by stiffening with HA. Overall, this dissertation demonstrated that ECM component (i.e., HA), culture dimensionality, and cell-cell interaction play a huge role in cell behavior, and these factors may interact with each other and result in synergistic effects.</p>
149

Programmed cell-immobilization of living cells by independent molecular interaction / 細胞膜へのクリック反応性官能基修飾の生細胞配置固定への応用

Zhu, Chengyuan 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(薬科学) / 甲第25225号 / 薬科博第187号 / 新制||薬科||21(附属図書館) / 京都大学大学院薬学研究科薬科学専攻 / (主査)教授 樋口 ゆり子, 教授 二木 史朗, 教授 小野 正博 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
150

Élaboration de nanoparticules hybrides multifonctionnelles à base de silice par microémulsion inverse : application à la conception d’un agent antibactérien / Elaboration of multifunctional silica-based hybrid nanoparticles by reverse microemulsion : application to the design of an antibacterial agent

Diop, Bocar Noël 16 December 2010 (has links)
Cette thèse a pour objectif l’élaboration de nanoparticules hybrides à base de silice par microémulsion inverse. Les nanoparticules de silice constituent une matrice de base permettant de confiner et de protéger des molécules organiques et/ou des nanoparticules métalliques. L’incorporation combinée de différentes entités dans la silice ouvre ainsi de larges perspectives de par l'introduction de nouvelles propriétés liées à la structure hybride. Afin d’élaborer de tels objets, nous avons utilisé des micelles inverses à base d'eau, de Triton X-100, d'hexanol et de cyclohexane comme milieu réactionnel. L’influence des conditions opératoires sur le contrôle de la taille des micelles inverses a d'abord été étudiée. Ces micelles inverses ont ensuite été mises à profit comme nanoréacteurs pour la synthèse de nanoparticules de silice par procédé sol-gel en utilisant les précurseurs alkoxysilanes adéquats. Nous avons regardé dans quelle mesure il était possible de contrôler la taille des nanoparticules de silice en fonction du pourcentage d’eau par rapport au tensioactif. Il a ainsi été possible d’accéder de façon reproductible à des nanoparticules avec de tailles variables, de 30 nm à 200 nm. Nous avons ensuite regardé qu'il était possible d'encapsuler au sein de cette matrice nanométrique des fluorophores et des nanoparticules d’or et d’argent de façon contrôlée. En vue d’assurer une bonne stabilisation colloïdale en solution, ces nanoparticules hybrides ont été fonctionnalisées d'une part par ajout d'un silane fonctionnel et d'autre part par click chemistry. Nous avons ainsi pu montrer qu’il est possible d’effectuer dans un même milieu micellaire l’ensemble des processus de fabrication de la nanoparticule hybride, de la matrice de silice à sa fonctionnalisation en passant par l’incorporation d’entités fonctionnelles. Cette méthode de synthèse séquentielle nous a ainsi permis de supprimer les étapes de purification et de redispersion qui peuvent s’avérer problématiques dans les procédés classiques. L’ensemble de ce travail a été mis à profit pour la conception d’un agent antibactérien à base de nanoparticules argent/silice capables d’empêcher la prolifération bactérienne grâce au relargage progressif des ions argent. Les tests effectués en solution comme sur le coton et le polyéthylène téréphtalate imprégnés montrent effectivement un caractère antibactérien certain de ces systèmes. / This thesis aims at developing hybrid nanoparticles based on silica by reverse microemulsion. The silica nanoparticles are the basic matrix containing and protecting organic molecules and/or metallic nanoparticles. The combined incorporation of different entities within the silica opens wide prospects for the introduction of new properties related to the hybrid structure. To develop such objects, we used reverse micelles based on water, Triton X-100, hexanol and cyclohexan as reaction medium. The influence of operating conditions on the control of the size of reverse micelles was first studied. These micelles were then set to be used as nanoreactors for the synthesis of silica nanoparticles by sol-gel using suitable alkoxysilanes precursors. We monitored how it was possible to control the size of silica nanoparticles based on the water to surfactant ratio. It was thus possible to prepare in a reproducible way nanoparticles with sizes varying from 30 nm to 200 nm. We then investigated the possibility to encapsulate, in this nanoscaled matrix, fluorophores and nanoparticles of gold and silver in a controlled manner. To ensure a good colloidal stability in solution, these hybrid nanoparticles were, on the one hand, modified by adding a functional silane and, on the other hand, by click chemistry. We have thus shown that it is possible to perform, in a same micellar media, all of manufacturing process of the hybrid nanoparticle, from the silica matrix to its functionalization passing by the incorporation of functional entities. This method of sequential synthesis allowed us to bypass the purification and redispersion steps that can be problematic in the conventional methods. All this work has been extended to the design of an antibacterial agent based of silver/silica nanoparticles, capable of preventing bacterial growth through the gradual release of silver ions. Tests conducted in solution on the impregnated cotton and polyethylene terephtalate indeed show an interesting antibacterial character of these systems.

Page generated in 0.0656 seconds