Spelling suggestions: "subject:"algebras envolvente"" "subject:"algebras envolvendo""
1 |
Identidades e polinômios centrais para álgebras de matrizes. / Identities and central polynomials for matrix algebras.BERNARDO, Leomaques Francisco Silva. 23 July 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-07-23T14:58:20Z
No. of bitstreams: 1
LEOMAQUES FRANCISCO SILVA BERNARDO - DISSERTAÇÃO PPGMAT 2009..pdf: 656966 bytes, checksum: 9ca0422e8cc572aa2c43d542260ef401 (MD5) / Made available in DSpace on 2018-07-23T14:58:20Z (GMT). No. of bitstreams: 1
LEOMAQUES FRANCISCO SILVA BERNARDO - DISSERTAÇÃO PPGMAT 2009..pdf: 656966 bytes, checksum: 9ca0422e8cc572aa2c43d542260ef401 (MD5)
Previous issue date: 2009-06 / Capes / Neste trabalho apresentamos um estudo sobre identidades e polinômios centrais para a álgebra das matrizes. Mais precisamente, apresentamos a descrição das identidades e polinômios centrais Zn-graduados e Z-graduados para a álgebra Mn(K) (matizes n x n sobre um corpo K), quando característica de K é zero. Depois, apresentamos a descrição dos polinômios centrais ordinários para a álgebra M2(K) (matrizes 2 x 2 sobre K), também para um corpo de característica zero. Finalmente, apresentamos duas construções clássicas de polinômios centrais para Mn(K), que surgiram como resposta a um problema sugerido por Kaplansky em 1956 sobre a existência de polinômios não triviais para esta álgebra. / In this work we study polynomial identities and central polynomials for matrix algebras. More precisely, we present the description of the identities and Zn-graded and Z-graded central polynomials for the algebra Mn(K) (the n x n matrices over the field K) when the characteristic of K is zero. Afterwards we give the description or the ordinary (nongraded) central polynomials for the algebra m2(K), the 2 x 2 matrices over K, assuming the field of characteristic zero. Finally, we present two classical constructions of central polynomials for Mn(K). These appeared as an answer to a problem posed by Kaplansky in 1956 about the existence of nontrivial central polynomials for that algebra. Read more
|
Page generated in 0.0616 seconds