• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bilans énergétiques et environnementaux de bâtiments à énergie positive

Thiers, Stéphane 21 November 2008 (has links) (PDF)
Le « bâtiment à énergie positive » est un concept de bâtiment très performant. Il peut constituer l'une des réponses possibles aux défis énergétiques et environnementaux d'aujourd'hui. Pourtant il est encore peu connu et peu mis en œuvre. À la lumière de quelques réalisations, ce concept a été défini et caractérisé, puis différents outils et méthodes ont été identifiés pour permettre l'analyse des performances d'un bâtiment. Compte tenu des spécificités techniques des bâtiments à énergie positive, deux solutions technologiques ont été plus particulièrement étudiées : un système de ventilation intégrant un échangeur air-sol a été modélisé puis validé à partir de données de mesure ; un système de chauffage aéraulique à micro-cogénération a été modélisé à partir de données issues d'un banc d'essai dédié. Les modèles de ces deux systèmes ont été intégrés à un outil de simulation thermique du bâtiment. L'analyse énergétique et environnementale a été appliquée à trois bâtiments réels très performants équipés de différents systèmes de chauffage, à partir de l'outil amélioré et des méthodes les plus adaptées. Le choix du système de chauffage mais aussi les critères d'évaluation retenus influencent fortement les résultats obtenus. Le bâtiment à énergie positive (bilan en énergie primaire) représente la meilleure solution pour la majorité des impacts environnementaux étudiés. L'analyse des impacts sur le cycle de vie et le calcul de la demande cumulative d'énergie permettent de caractériser finement ses performances environnementales.
2

Contribution à l'étude d'un échangeur de chaleur air-sol (puits canadien) pour le rafraîchissement de l'air sous le climat chaud et semi-aride de Marrakech / Contribution to the study of an earth to air heat exchanger for air cooling in hot and semi-arid climate of Marrakech

Khabbaz, Mohamed 17 December 2016 (has links)
La conception des bâtiments à faible consommation d'énergie est devenue un enjeu très important à travers le monde afin de minimiser la consommation d'énergie et les émissions de gaz à effet de serre associés. Au Maroc, le secteur du bâtiment représente 25% de la consommation énergétique finale du pays avec 18% réservée au résidentiel et 7% pour le tertiaire (ADEREE 2011). L'intégration de systèmes passifs ou semi-passifs de rafraîchissement/chauffage dans le bâtiment est désormais indispensable pour la réduction de la consommation énergétique tout en améliorant le confort thermique. Un de ces systèmes est l’échangeur air-sol (EAHX). Le principe du rafraîchissement à l'aide de l’échangeur air-sol est bien établi, mais le comportement d'un tel système dépend des conditions climatiques et de la nature du sol. L’échangeur air-sol étudié est installé dans une maison type villa située dans la banlieue de Marrakech. Un monitoring de ce système a été réalisé durant l’été 2013 à travers un suivi des températures et de l'humidité durant 39 jours. Les résultats montrent que l’échangeur air-sol est un système adapté pour le rafraîchissement de l’air dans les bâtiments à Marrakech, puisqu’il procure une température de soufflage quasi-constante d’environ 22°C pour le débit 244 m3/h et 25°C pour le débit de 312m3/h, avec une humidité relative autour de 50 % alors que la température extérieure dépasse 40°C. Le modèle mathématique choisi et l’outil de simulation associé, Type 460 opérant sous le logiciel commercial TRNSYS, sont analysés et validés par confrontation avec les résultats expérimentaux. Cette confrontation a montré une excellente concordance, avec un écart absolu moyen entre la mesure et la simulation toujours inférieur à 0,5°C et décroit à 0,2°C à la sortie de tube enterré. La validation de l’outil de simulation avec un échangeur air-sol enterré dans un sol soumis à conditions météorologiques extérieures n’a pas été réalisée auparavant. D'autre part, les simulations dynamiques de l’échangeur air-sol sont réalisées en fonctionnement continu, avec 1 et 3 tubes durant la période chaude de l’année (mai-septembre). Les résultats montrent que le système procure une température à la sortie de tube enterré de 25,1°C (1 tube) et 26 °C (3 tubes). Il en résulte une capacité de refroidissement de 58w/m2 (1 tube) et 55w/m2 (3 tubes) pour une température à l’entrée de 44,6°C. Une étude de sensibilité, utilisant la méthode de Sobol, de la performance thermique de l'échangeur durant la saison chaude (mai-septembre) a permis de dégager les paramètres les plus influents. Par la suite, une étude paramétrique complète sur l’énergie sensible totale perdue par l’air lors dans son passage dans l’échangeur air-sol est réalisée en fonction des paramètres les plus influents déterminés auparavant. / The low energy buildings tendency has become a major worldwide key to minimize energy consumption and greenhouse gas emissions issues. In Morocco, the building sector represents 25% of the total final energy consumption, whereas 18% is dedicated for residential and 7% for the tertiary sector (ADEREE 2011). The integration of passive or semi-passive for cooling/heating purposes into buildings is an essential act for reducing energy consumption while improving thermal comfort. One of these systems is the Earth to Air Heat Exchanger (EAHX). Its principle to use the ground-coupled heat exchanger for cooling is well established, but the behavior of such a system depends on the climate and the soil, which influences the choice of design parameters of this system. We performed a numerical and experimental study on the thermal performance of an Earth to air heat exchanger installed in a villa type house in the suburbs of Marrakech. A monitoring survey was conducted during the summer period of 2013, to acquire temperature and humidity measurements for 39 days. The results show that the earth to air heat exchanger is a system more adapted to refresh the air in buildings in Marrakech, as it provides a quasi constant air temperature of approximately 22°C for flow 244 m3/h and 25°C for flow of 312 m3/h, with relative humidity that is around 50% when the outside temperature exceeds 40°C. The mathematical model chosen and the associated simulation tool used is Type 460 operating under the TRNSYS commercial software, analyzed and validated by comparison with experimental results. This comparison showed excellent agreement, with an average absolute difference between the measurement and simulation that is always lower than 0.5°C and 0.2°C as it decreases at the output of the buried pipe. On the other hand, dynamic simulations of the EAHX using TRNSYS software (TYPE 460) were performed with one pipe or three pipes continuously running. The achieving specific cooling capacity is 58 W/m2 (one pipe) and 55 W/m2 (three pipes) obtained for air temperatures of 25 °C and 26 °C respectively, at the EAHX outlet and 44.6 °C at its inlet. A sensitivity analysis, using the method of Sobol, of the thermal performance of the earth air heat exchanger (EAHX) in the hot season (May-September) has identified the most influential parameters. Thereafter, a complete parametric study on the total sensible energy lost through the air when in passing through the air-ground heat exchanger is made based on the most influential parameters determined previously.
3

Environnements de simulation adaptés à l'étude du comportement énergétique des bâtiments basse consommation

Tittelein, Pierre 09 December 2008 (has links) (PDF)
En France, à partir de 2012, tous les bâtiments neufs devront répondre aux critères de basse consommation, c'est-à-dire qu'ils devront consommer moins de 50 kW.h/(m².an) en énergie primaire pour le chauffage, le refroidissement, la ventilation, la production d'eau chaude sanitaire et l'éclairage (à moduler selon la région et l'altitude). La simulation numérique a un rôle important à jouer pour atteindre cet objectif.<br />Les environnements de simulation énergétique existants ont été conçus pour des bâtiments classiques pour lesquels les consommations sont beaucoup plus importantes que celles fixées pour 2012, il faut donc voir si les modèles mais aussi les méthodes de simulations utilisés correspondent toujours aux spécificités de ces nouveaux bâtiments. L'objectif de ce travail est de montrer l'intérêt d'utiliser un environnement de simulation basé sur les systèmes d'équations pour étudier le comportement énergétique des bâtiments basse consommation. <br />Pour cela, plusieurs modèles ont été implémentés dans l'environnement SIMSPARK. Il s'agit d'un modèle de matériau à changement de phase, d'un modèle de prise en compte du rayonnement de courtes longueurs d'onde par calcul de la tache solaire et d'un modèle d'échangeur air-sol. Ils ont été intégrés dans un modèle global de bâtiment basse consommation ce qui a permis de montrer les avantages de l'environnement de simulation utilisé. Le fait qu'il soit orienté objet permet de valider indépendamment les nouveaux modèles puis de les intégrer facilement à un modèle de niveau hiérarchique supérieur. Le fait qu'il soit basé sur les systèmes d'équations a permis grâce à la non orientation a priori du modèle d'inverser le sens de résolution de plusieurs problèmes dans une simulation dynamique. Enfin, la robustesse des méthodes de résolution utilisées a été éprouvée.

Page generated in 0.0382 seconds