• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theoretical contributions to Monte Carlo methods, and applications to Statistics / Contributions théoriques aux méthodes de Monte Carlo, et applications à la Statistique

Riou-Durand, Lionel 05 July 2019 (has links)
La première partie de cette thèse concerne l'inférence de modèles statistiques non normalisés. Nous étudions deux méthodes d'inférence basées sur de l'échantillonnage aléatoire : Monte-Carlo MLE (Geyer, 1994), et Noise Contrastive Estimation (Gutmann et Hyvarinen, 2010). Cette dernière méthode fut soutenue par une justification numérique d'une meilleure stabilité, mais aucun résultat théorique n'avait encore été prouvé. Nous prouvons que Noise Contrastive Estimation est plus robuste au choix de la distribution d'échantillonnage. Nous évaluons le gain de précision en fonction du budget computationnel. La deuxième partie de cette thèse concerne l'échantillonnage aléatoire approché pour les distributions de grande dimension. La performance de la plupart des méthodes d’échantillonnage se détériore rapidement lorsque la dimension augmente, mais plusieurs méthodes ont prouvé leur efficacité (e.g. Hamiltonian Monte Carlo, Langevin Monte Carlo). Dans la continuité de certains travaux récents (Eberle et al., 2017 ; Cheng et al., 2018), nous étudions certaines discrétisations d’un processus connu sous le nom de kinetic Langevin diffusion. Nous établissons des vitesses de convergence explicites vers la distribution d'échantillonnage, qui ont une dépendance polynomiale en la dimension. Notre travail améliore et étend les résultats de Cheng et al. pour les densités log-concaves. / The first part of this thesis concerns the inference of un-normalized statistical models. We study two methods of inference based on sampling, known as Monte-Carlo MLE (Geyer, 1994), and Noise Contrastive Estimation (Gutmann and Hyvarinen, 2010). The latter method was supported by numerical evidence of improved stability, but no theoretical results had yet been proven. We prove that Noise Contrastive Estimation is more robust to the choice of the sampling distribution. We assess the gain of accuracy depending on the computational budget. The second part of this thesis concerns approximate sampling for high dimensional distributions. The performance of most samplers deteriorates fast when the dimension increases, but several methods have proven their effectiveness (e.g. Hamiltonian Monte Carlo, Langevin Monte Carlo). In the continuity of some recent works (Eberle et al., 2017; Cheng et al., 2018), we study some discretizations of the kinetic Langevin diffusion process and establish explicit rates of convergence towards the sampling distribution, that scales polynomially fast when the dimension increases. Our work improves and extends the results established by Cheng et al. for log-concave densities.
2

Mélanges bayésiens de modèles d'extrêmes multivariés, Application à la prédétermination régionale des crues avec données incomplètes.

Anne, Sabourin 24 September 2013 (has links) (PDF)
La théorie statistique univariée des valeurs extrêmes se généralise au cas multivarié mais l'absence d'un cadre paramétrique naturel complique l'inférence de la loi jointe des extrêmes. Les marges d'erreur associées aux estimateurs non paramétriques de la structure de dépendance sont difficilement accessibles à partir de la dimension trois. Cependant, quantifier l'incertitude est d'autant plus important pour les applications que le problème de la rareté des données extrêmes est récurrent, en particulier en hydrologie. L'objet de cette thèse est de développer des modèles de dépendance entre extrêmes, dans un cadre bayésien permettant de représenter l'incertitude. Après une introduction à la théorie des valeurs extrêmes et à l'inférence bayésienne (chapitre 1), le chapitre 2 explore les propriétés des modèles obtenus en combinant des modèles paramétriques existants, par mélange bayésien (Bayesian Model Averaging). Un modèle semi-paramétrique de mélange de Dirichlet est étudié au chapitre suivant : une nouvelle paramétrisation est introduite afin de s'affranchir d'une contrainte de moments caractéristique de la structure de dépendance et de faciliter l'échantillonnage de la loi a posteriori. Le chapitre~\ref{censorDiri} est motivé par une application hydrologique: il s'agit d'estimer la structure de dépendance spatiale des crues extrêmes dans la région cévenole des Gardons en utilisant des données historiques enregistrées en quatre points. Les données anciennes augmentent la taille de l'échantillon mais beaucoup de ces données sont censurées. Une méthode d'augmentation de données est introduite, dans le cadre du mélange de Dirichlet, palliant l'absence d'expression explicite de la vraisemblance censurée. Les perspectives sont discutées au chapitre 5.

Page generated in 0.0649 seconds