• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient Path and Parameter Inference for Markov Jump Processes

Boqian Zhang (6563222) 15 May 2019 (has links)
<div>Markov jump processes are continuous-time stochastic processes widely used in a variety of applied disciplines. Inference typically proceeds via Markov chain Monte Carlo (MCMC), the state-of-the-art being a uniformization-based auxiliary variable Gibbs sampler. This was designed for situations where the process parameters are known, and Bayesian inference over unknown parameters is typically carried out by incorporating it into a larger Gibbs sampler. This strategy of sampling parameters given path, and path given parameters can result in poor Markov chain mixing.</div><div><br></div><div>In this thesis, we focus on the problem of path and parameter inference for Markov jump processes.</div><div><br></div><div>In the first part of the thesis, a simple and efficient MCMC algorithm is proposed to address the problem of path and parameter inference for Markov jump processes. Our scheme brings Metropolis-Hastings approaches for discrete-time hidden Markov models to the continuous-time setting, resulting in a complete and clean recipe for parameter and path inference in Markov jump processes. In our experiments, we demonstrate superior performance over Gibbs sampling, a more naive Metropolis-Hastings algorithm we propose, as well as another popular approach, particle Markov chain Monte Carlo. We also show our sampler inherits geometric mixing from an ‘ideal’ sampler that is computationally much more expensive.</div><div><br></div><div>In the second part of the thesis, a novel collapsed variational inference algorithm is proposed. Our variational inference algorithm leverages ideas from discrete-time Markov chains, and exploits a connection between Markov jump processes and discrete-time Markov chains through uniformization. Our algorithm proceeds by marginalizing out the parameters of the Markov jump process, and then approximating the distribution over the trajectory with a factored distribution over segments of a piecewise-constant function. Unlike MCMC schemes that marginalize out transition times of a piecewise-constant process, our scheme optimizes the discretization of time, resulting in significant computational savings. We apply our ideas to synthetic data as well as a dataset of check-in recordings, where we demonstrate superior performance over state-of-the-art MCMC methods.</div><div><br></div>
2

When Infinity is Too Long to Wait: On the Convergence of Markov Chain Monte Carlo Methods

Olsen, Andrew Nolan 08 October 2015 (has links)
No description available.
3

Five contributions to econometric theory and the econometrics of ultra-high-frequency data

Meitz, Mika January 2006 (has links)
No description available.
4

Theoretical contributions to Monte Carlo methods, and applications to Statistics / Contributions théoriques aux méthodes de Monte Carlo, et applications à la Statistique

Riou-Durand, Lionel 05 July 2019 (has links)
La première partie de cette thèse concerne l'inférence de modèles statistiques non normalisés. Nous étudions deux méthodes d'inférence basées sur de l'échantillonnage aléatoire : Monte-Carlo MLE (Geyer, 1994), et Noise Contrastive Estimation (Gutmann et Hyvarinen, 2010). Cette dernière méthode fut soutenue par une justification numérique d'une meilleure stabilité, mais aucun résultat théorique n'avait encore été prouvé. Nous prouvons que Noise Contrastive Estimation est plus robuste au choix de la distribution d'échantillonnage. Nous évaluons le gain de précision en fonction du budget computationnel. La deuxième partie de cette thèse concerne l'échantillonnage aléatoire approché pour les distributions de grande dimension. La performance de la plupart des méthodes d’échantillonnage se détériore rapidement lorsque la dimension augmente, mais plusieurs méthodes ont prouvé leur efficacité (e.g. Hamiltonian Monte Carlo, Langevin Monte Carlo). Dans la continuité de certains travaux récents (Eberle et al., 2017 ; Cheng et al., 2018), nous étudions certaines discrétisations d’un processus connu sous le nom de kinetic Langevin diffusion. Nous établissons des vitesses de convergence explicites vers la distribution d'échantillonnage, qui ont une dépendance polynomiale en la dimension. Notre travail améliore et étend les résultats de Cheng et al. pour les densités log-concaves. / The first part of this thesis concerns the inference of un-normalized statistical models. We study two methods of inference based on sampling, known as Monte-Carlo MLE (Geyer, 1994), and Noise Contrastive Estimation (Gutmann and Hyvarinen, 2010). The latter method was supported by numerical evidence of improved stability, but no theoretical results had yet been proven. We prove that Noise Contrastive Estimation is more robust to the choice of the sampling distribution. We assess the gain of accuracy depending on the computational budget. The second part of this thesis concerns approximate sampling for high dimensional distributions. The performance of most samplers deteriorates fast when the dimension increases, but several methods have proven their effectiveness (e.g. Hamiltonian Monte Carlo, Langevin Monte Carlo). In the continuity of some recent works (Eberle et al., 2017; Cheng et al., 2018), we study some discretizations of the kinetic Langevin diffusion process and establish explicit rates of convergence towards the sampling distribution, that scales polynomially fast when the dimension increases. Our work improves and extends the results established by Cheng et al. for log-concave densities.
5

Semiparametric Bayesian Approach using Weighted Dirichlet Process Mixture For Finance Statistical Models

Sun, Peng 07 March 2016 (has links)
Dirichlet process mixture (DPM) has been widely used as exible prior in nonparametric Bayesian literature, and Weighted Dirichlet process mixture (WDPM) can be viewed as extension of DPM which relaxes model distribution assumptions. Meanwhile, WDPM requires to set weight functions and can cause extra computation burden. In this dissertation, we develop more efficient and exible WDPM approaches under three research topics. The first one is semiparametric cubic spline regression where we adopt a nonparametric prior for error terms in order to automatically handle heterogeneity of measurement errors or unknown mixture distribution, the second one is to provide an innovative way to construct weight function and illustrate some decent properties and computation efficiency of this weight under semiparametric stochastic volatility (SV) model, and the last one is to develop WDPM approach for Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model (as an alternative approach for SV model) and propose a new model evaluation approach for GARCH which produces easier-to-interpret result compared to the canonical marginal likelihood approach. In the first topic, the response variable is modeled as the sum of three parts. One part is a linear function of covariates that enter the model parametrically. The second part is an additive nonparametric model. The covariates whose relationships to response variable are unclear will be included in the model nonparametrically using Lancaster and Šalkauskas bases. The third part is error terms whose means and variance are assumed to follow non-parametric priors. Therefore we denote our model as dual-semiparametric regression because we include nonparametric idea for both modeling mean part and error terms. Instead of assuming all of the error terms follow the same prior in DPM, our WDPM provides multiple candidate priors for each observation to select with certain probability. Such probability (or weight) is modeled by relevant predictive covariates using Gaussian kernel. We propose several different WDPMs using different weights which depend on distance in covariates. We provide the efficient Markov chain Monte Carlo (MCMC) algorithms and also compare our WDPMs to parametric model and DPM model in terms of Bayes factor using simulation and empirical study. In the second topic, we propose an innovative way to construct weight function for WDPM and apply it to SV model. SV model is adopted in time series data where the constant variance assumption is violated. One essential issue is to specify distribution of conditional return. We assume WDPM prior for conditional return and propose a new way to model the weights. Our approach has several advantages including computational efficiency compared to the weight constructed using Gaussian kernel. We list six properties of this proposed weight function and also provide the proof of them. Because of the additional Metropolis-Hastings steps introduced by WDPM prior, we find the conditions which can ensure the uniform geometric ergodicity of transition kernel in our MCMC. Due to the existence of zero values in asset price data, our SV model is semiparametric since we employ WDPM prior for non-zero values and parametric prior for zero values. On the third project, we develop WDPM approach for GARCH type model and compare different types of weight functions including the innovative method proposed in the second topic. GARCH model can be viewed as an alternative way of SV for analyzing daily stock prices data where constant variance assumption does not hold. While the response variable of our SV models is transformed log return (based on log-square transformation), GARCH directly models the log return itself. This means that, theoretically speaking, we are able to predict stock returns using GARCH models while this is not feasible if we use SV model. Because SV models ignore the sign of log returns and provides predictive densities for squared log return only. Motivated by this property, we propose a new model evaluation approach called back testing return (BTR) particularly for GARCH. This BTR approach produces model evaluation results which are easier to interpret than marginal likelihood and it is straightforward to draw conclusion about model profitability by applying this approach. Since BTR approach is only applicable to GARCH, we also illustrate how to properly cal- culate marginal likelihood to make comparison between GARCH and SV. Based on our MCMC algorithms and model evaluation approaches, we have conducted large number of model fittings to compare models in both simulation and empirical study. / Ph. D.
6

L^2-Spektraltheorie für Markov-Operatoren / L^2-spectral-theory for Markov operators

Wübker, Achim 07 January 2008 (has links)
No description available.

Page generated in 0.0748 seconds