• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyses des forces photo-­induites par le laser femtoseconde dans les verres à base de silice / Analyses of photo-induced forces by femtosecond laser in silica-based glasses

Desmarchelier, Rudy 04 July 2014 (has links)
Au delà du simple dépôt d’énergie obtenu par des lasers à impulsions longues, le laser femtoseconde conduit à la création de forces agissant sur la matière qui impriment une nanostructuration en volume dans la silice classée dans les dommages de type II. Si on s’avérait capable de maîtriser ces forces, on pourrait alors dépasser les applications actuelles des lasers et ouvrir de nouvelles possibilités en sciences des matériaux. Une partie de cette thèse vise à caractériser et à comprendre les transformations induites par le laser.Dans un premier temps, cette thèse contribue à l’amélioration de nos connaissances concernant la sensibilité de l’interaction à la direction d’écriture et de la polarisation. A travers l’étude des propriétés optiques de la biréfringence linéaire et de l’analyse fine des observations des traces d’interaction, on a pu mettre en évidence son origine dans l’asymétrie spatiale du faisceau et conforter le modèle de la biréfringence de forme à l’origine d’une forte biréfringence. L’ensemble des études a permis la détermination des mécanismes physiques mis en jeu lors de l’irradiation laser en volume.La seconde découverte, également à la base de cette thèse, est la présence d’une chiralité photo-induite. Dans ce sens, nous avons étudié les propriétés circulaires mais la caractérisation de celles-ci soulève des problèmes techniques : les mesures sont faussées en raison de la présence simultanée de fortes propriétés linéaires et de faibles propriétés circulaires. Néanmoins, l’interprétation des mesures mettent en évidence la présence d’une circularité sans pour autant la quantifié. / Beyond the simple deposit of energy with long pulse lasers, the femtosecond laser created forces acting on the matter, which print 3D nanostructuration in silica, classified as type II damage. If one proves to be able to control these forces, one could exceed the current applications of the lasers and open new possibilities in materials sciences. This thesis contributes to characterize and understand the transformation induced by the laser.At first, this thesis contributes to improve our knowledge about the sensitivity of the interaction to the writing and polarization directions. The study of the optical properties of linear birefringence and analysis of the observations of the laser/matter interaction highlight his origin to the beam asymmetry and consolidate the model of form birefringence at the origin of a strong birefringence. All studies have allowed the determination of possible physical mechanisms during the laser irradiation.Second discovery, also at the base of this thesis, is the presence of an photo-induced chirality. In this direction, we studied the circular properties but the characterization of those raises technical problems: measurements are distorted because of the simultaneous presence of strong linear properties and weak circular properties. Nevertheless, the interpretation of measurements highlights the presence of a circularity without revealing its amplitude.
2

Oriented micro/nano-crystallization in silicate glasses under thermal or laser field for mastering optical non-linear optics in bulk / Micro/nano-cristallisation orientée dans des verres silices sous le champ thermique ou du laser pour maîtriser les propriétés optique nonlinéaire en volume

He, Xuan 01 December 2013 (has links)
Au cours des dernières années, les matériaux optiques non linéaires ont attiré beaucoup d'attention en raison de leur application dans les télécommunications optiques. Les vitro-céramiques pour l’optique non-linéaire, ayant une microstructure alignée, présentent des propriétés physiques anisotropes. Il est donc intéressant de maîtriser la cristallisation dans ce genre de verre. Nous avons étudié ici la distribution, la taille et l'orientation sous un champ supplémentaire, en particulier par l’irradiation femtoseconde, de verres silicatés. Ce travail est important pour la conception et la production de nouveaux matériaux optiques non linéaires multi- fonction. Dans cette thèse, le champ thermique a été utilisé pour produire des cristaux dans un verre SrO-TiO₂-SiO₂. L’analyse a été menée à l’aide de la méthode des franges de Maker et de de diffraction des rayons X pour étudier la cristallisation et les propriétés optiques non-linéaires. Il a montré que les cristaux non linéaires Sr₂TiSi₂O₈ peut être obtenue dans la couche de surface par traitement thermique. L'axe polaire de cristaux orientés est perpendiculaire à la surface du verre. En augmentant la température ou en prolongeant la durée de traitement thermique, l’apparition d’une intensité non-nulle de génération de second harmonique (GSH) en incidence perpendiculaire indique la présence de cristaux orientés de manière aléatoire dans le volume du verre. Etant donné la cristallisation, spatialement difficile à contrôler par traitement thermique, l’irradiation laser femtoseconde pour contrôler la cristallisation dans le verre sont proposée en raison de son contrôle précis du dépôt d'énergie dans le temps et dans l'espace. Il ouvre des possibilités fantastiques pour la fabrication de matériaux multifonctionnels par maîtrisant la cristallization des cristaux non linéaires dans le verre. Nous avons précipité des cristaux orientés de LiNbO₃ et de Sr₂TiSi₂O₈ en volume par irradiation laser femtoseconde à haute cadence (typ. 300 kHz). Dans le verre Li₂O-Nb₂O₅-SiO₂, les micro-/nano-cristaux en variant l'énergie d'impulsion et la direction de polarisation ont obtenu. En particulier, lors de l'application à basse énergie et de la polarisation parallèle à la direction d'inscription du laser, la cristallization orientée en nanomètre a été démontrée par EBSD (Electron diffraction rétro-diffusée). Le mesure microscopique de SH a prouvé l’orientation préférentielle de cristallisation parallèlement à la direction de déplacement du faisceau laser. Afin de comprendre l'orientation exacte des cristaux par rapport à la direction d'écriture, une série de mesurer les signaux cohérent de SH ont été réalisés dans des paires de lignes de laser avec des orientations de déplacement opposées. EDS (spectromètre à dispersion d'énergie) et la micro-sonde nucléaire ont été utilisées pour réaliser l'analyse chimique dans les lignes de laser. Nous discutons aussi le mécanisme de cristallisation orientée en mode statique et en mode dynamique en illustrant la distribution des gradients différents. Pour le système SrO-TiO₂-SiO₂, l'irradiation du laser a été appliquée dans les verres stoechiométrique et non-stoechiométrique. Dans le premier cas, non seulement la taille et la distribution peuvent être contrôlées en variant les paramètres du laser, mais aussi la phase peuvent être choisis dans l'échantillon. La mesure de SH a montré que l'axe polaire de cristaux est toujours dans le sens de l'écriture. Pour le verre non-stoechiométrique, des purs cristaux de Sr₂TiSi₂O₈ ont été obtenus seulement. En utilisant EBSD, l'écriture asymétrique ont été étudiés en variant l’orientation de la polarisation et de l'écriture. On a montré ainsi que le mécanisme d'orientation est probablement dû à l'action combinée du front « tilté » de l’impulsion et à l’orientation du plan de polarisation qui conduit à une photosensibilité anisotrope. En conséquence, cela induit une distribution asymétrique des gradients thermiques et chimiques. / In the past few years, nonlinear optical materials have attracted much attention due to their application in optical telecommunications. Nonlinear optical glass-related materials have been widely studied according to their advantages. Glass ceramics having an aligned microstructure would exhibit an anisotropy of physical properties. This dissertation mainly contributes to the control of micro/nano-crystallization in silicate glass in crystalline phase, distribution, size and orientation under additional field, particularly by femtosecond irradiation, to master the nonlinear optical properties of glass further. This work is significant for the design and production of novel nonlinear optical material with multi-function in future. In this thesis, thermal field was used to induce crystals in SrO-TiO₂-SiO₂ glass. The crystallization behavior of glasses in different heat-treated condition and their second-order nonlinear optical properties have been analyzed by Maker fringes method and X-ray diffraction measurement, respectively. It showed that the oriented crystallization of nonlinear Sr₂TiSi₂O₈ crystals can be obtained in the surface layer by heat treatment. The polar axis of oriented crystals was perpendicular to the sample surface. Moreover, by applying higher temperature or prolonging the time duration of heat treatment, the maximum intensity of second harmonic generation shifting toward 0º is likely due to the presence of randomly distributed crystals in glass and surface crystallization turns to be volume at this moment. However, since it is hard to control crystallization by heat treatment and time-consuming, femtosecond laser irradiation was proposed to realize the control of crystallization in glass owing to the accessible control of energy deposition in time and in space. It opens fantastic opportunities to manufacture novel multifunctional materials by manipulating the crystallization of nonlinear crystals embedded in glasses. Therefore, we achieved to precipitate preferential oriented LiNbO₃ and Sr₂TiSi₂O₈ crystals in glass with femtosecond laser irradiation at high repetition rate (typ. 300 kHz). In Li₂O-Nb₂O₅-SiO₂ glass, we obtained micro-/nano-crystals in glass sample by varying pulse energy and polarization direction. Specifically, when applying low pulse energy and polarization parallel to laser writing direction, the oriented nano-crystallization has been obtained as shown by EBSD (Electron back-scattered diffraction). Second harmonic (SH) microscopy measurement illustrated preferred orientation of crystallization in laser lines. In order to understand the exact orientation of crystals with respect to the writing direction, a series of coherent SH measurement has been achieved in pairs of laser lines written in opposite orientation. EDS (Energy Dispersive Spectrometer) and nuclear micro-probe has been used to realize the chemical analysis in laser lines. The mechanism of oriented crystallization was discussed both in static mode and in dynamic mode through illustrating the distribution of different gradients. In SrO-TiO₂-SiO₂ system, laser irradiation was applied both in stoichiometric and non-stoichiometric glasses. In the former case, not only the size and distribution can be controlled by varying laser parameters, but also the crystalline phase can be chosen in samples. SH microscopy measurement was used to characterize the nonlinear properties of glass and it implied that the polar axis of crystals is always along the writing direction. In non-stoichiometric glass, only pure Sr₂TiSi₂O₈ crystals were obtained. The asymmetric writing involving oriented crystallization has been studied by varying polarization and writing orientation. The orientational dependent is likely due to the combined action of oblique pulse front tilt affected by the polarization orientation plane leading to different anisotropic photosensitivity and its aftereffects to induce asymmetric distribution of thermal and chemical gradients.
3

Contribution to nano or micro crystallization induction in silica-based glass by femtosecond laser irradiation / Contribution à l’étude de l’induction de nano ou micro cristallisations dans des verres à base de silice à l’aide du laser femtoseconde

Fan, Chaxing 14 September 2012 (has links)
Le traitement par laser femtoseconde dans des matériaux transparents est prometteur du fait de la possibilité de contrôler le dépôt d'énergie dans le temps et dans l'espace. Il ouvre ainsi des possibilités fantastiques pour la fabrication de nouveaux matériaux composites multifonctionnels en manipulant la taille, la forme et l'orientation des cristaux non linéaires dans les verres. Cette thèse contribue principalement à la maîtrise de la nano ou micro cristallisation dans des verres à base de silice pour le développement de nouveaux matériaux électro-optiques multi-fonctionnels par l’irradiation au laser femtoseconde. On démontre la faisabilité du traitement des matériaux par le laser femtoseconde pour remodeler les propriétés optiques linéaires et non linéaires ou de la fabrication de micro / nano agrégats, ainsi que les formes et les orientations (en particulier agrégats asymétriques), les tailles et les distributions (à l'échelle sub-micrométrique). Le mémoire débute par un chapitre introductif sur l’investigation de l’écriture par laser impulsionnel ultra-bref dans la silice pure, ainsi que dans le verre à base de silice, afin de bien maîtriser l’inscription avec ce nouveau type de laser. Nous discutons les effets des paramètres du laser sur l’écriture, telle que la vitesse de déplacement du faisceau et la polarisation du laser, sur les propriétés optiques et les structures atomiques, par exemple, la biréfringence, les champs de contraintes et le changement d’arrangement atomique. Il est mis en évidence des effets orientationnels et directionnels spécifiques de l’interaction de ce type de laser avec les verres. Le mécanisme associé fait probablement intervenir l'inclinaison du front de la phase du champ de l’impulsion par rapport au déplacement du faisceau dans le solide. La précipitation des cristaux LiNbO3 orientés dans le verre avec l’irradiation laser femtoseconde est réalisée dans le cas d’une fréquence de répétition élevée (typ. 300 kHz) permettant l’accumulation de chaleur. Des cristaux orientés avec leur axe polaire aligné dans la direction d’inscription du laser ont été fabriqués en manipulant le gradient de température par le réglage des paramètres du laser. L’imagerie microscopique de génération de seconde harmonique (GSH) montre le caractère cristallin asymétrique et fournit des informations sur les orientations dominantes favorisées lors des processus de cristallisation. Les résultats de diffraction d’électrons rétrodiffusés (EBSD) fournissent des informations détaillées sur l’orientation des cristaux et révèlent la structure des lignes écrites notamment tailles et dispersion des orientations. En outre, des débuts de modélisation ont été réalisés pour se diriger vers une maîtrise de l’écriture de structures linéaires cristallines. Une autre section du mémoire rapporte l’étude de reformation par l’irradiation avec le laser femtoseconde de nanoparticules d'or quasi-sphériques ou quasi-tige dans le verre à base de silice. Les nanoparticules d'or de la taille de 3-4 nm ont été précipitées par traitement thermique. Après l’irradiation par le laser, des mesures optiques d'absorption, de biréfringence et de dichroïsme ont été effectuées pour étudier la modification de la forme de nanoparticules d'or dans le verre. Les simulations théoriques ont été menées pour interpréter les résultats expérimentaux basés sur la théorie de Gans et le modèle de Drude avec les constantes diélectriques connus de l'or. Enfin, des stratégies de conception efficaces sont aussi suggérées pour le futur pour des applications possibles utilisant la précipitation, la forme et l'orientation des micro/nanoparticules en 3D. / Femtosecond laser processing in transparent materials is promising owing to the accessible control of energy deposition in time and in space. In this regime, it opens fantastic opportunities to manufacture novel multifunctional composite materials by manipulating the size, shape and orientation of nonlinear crystals with intrinsic symmetry embedded in glasses. This dissertation mainly contributes to the control of nano or micro crystallization inside silica-based glasses for the development of novel multifunctional electro-optical materials by femtosecond laser irradiation. We demonstrate the feasibilities of femtosecond laser materials processing for re-shaping linear and non-linear optical properties in silica-based glass by inducing or fabricating different micro/nanoclusters as well as their shapes and orientation (especially asymmetric clusters), sizes, and distributions (at the sub-micrometer scale). In this thesis, it firstly covers a chapter for the investigation on ultrafast asymmetric orientational writing in pure silica as well as in silica-based glass in order to well master the laser writing. We discuss the effects of the laser parameters on asymmetric writing such as writing speed and the laser polarization by the femtosecond-laser generated optical properties and structures, e.g., birefringence, phase change and surface topography of the cross section of laser tracks. The mechanism of orientational dependent writing is likely due to the oblique pulse front tilt affected by the polarization orientation plane leading to different anisotropic photosensitivity. 3D photo-precipitation of oriented LiNbO3-like crystals in glass with femtosecond laser irradiation is also achieved at high repetition rate (typ. 300 kHz). Oriented crystals with their polar axis mostly aligned with the laser scanning direction have been fabricated by manipulation of the temperature gradient in adjusting the laser parameters. Second harmonic generation (SHG) microscopy demonstrates optical activity of crystalline features and provides some orientation information suggestive of certain dominant or favored orientations. Electron back-scattering diffraction (EBSD) results provide more detailed local crystal orientation information and illustrate interesting features of the structure of the lines, with regions of distinctly different grain sizes and orientations. Furthermore, modeling the temperature gradient was proposed for better understanding the formation mechanism of the orientation of femtosecond laser-induced crystallization when the laser is moved (not only in the static mode). Quasi-spherical or quasi-rod gold nanoparticles in silica-based glass can be re-shaped by femtosecond laser irradiation studying through their properties, and their orientation appears to be parallel to the written lines. Gold nanoparticles in the size range of 3-4 nm were precipitated by post heat-treatment. After ultrafast laser irradiation, optical absorption, birefringence and dichroism measurements are performed to investigate the modification of gold nanoparticle shape in glass. Theoretical simulations have been carried out to interpret the experimental results based on the Gans' theory and Drude model together with the known dielectric constants of gold. Furthermore, feasible applications and efficient design strategies are also referred for future devices based on micro/nanoclusters 3D precipitation, shaping and orientation mastering.
4

Contribution à l'étude de l'induction de nano ou micro cristallisations dans des verres à base de silice à l'aide du laser femtoseconde

Fan, Chaxing 14 September 2012 (has links) (PDF)
Le traitement par laser femtoseconde dans des matériaux transparents est prometteur du fait de la possibilité de contrôler le dépôt d'énergie dans le temps et dans l'espace. Il ouvre ainsi des possibilités fantastiques pour la fabrication de nouveaux matériaux composites multifonctionnels en manipulant la taille, la forme et l'orientation des cristaux non linéaires dans les verres. Cette thèse contribue principalement à la maîtrise de la nano ou micro cristallisation dans des verres à base de silice pour le développement de nouveaux matériaux électro-optiques multi-fonctionnels par l'irradiation au laser femtoseconde. On démontre la faisabilité du traitement des matériaux par le laser femtoseconde pour remodeler les propriétés optiques linéaires et non linéaires ou de la fabrication de micro / nano agrégats, ainsi que les formes et les orientations (en particulier agrégats asymétriques), les tailles et les distributions (à l'échelle sub-micrométrique). Le mémoire débute par un chapitre introductif sur l'investigation de l'écriture par laser impulsionnel ultra-bref dans la silice pure, ainsi que dans le verre à base de silice, afin de bien maîtriser l'inscription avec ce nouveau type de laser. Nous discutons les effets des paramètres du laser sur l'écriture, telle que la vitesse de déplacement du faisceau et la polarisation du laser, sur les propriétés optiques et les structures atomiques, par exemple, la biréfringence, les champs de contraintes et le changement d'arrangement atomique. Il est mis en évidence des effets orientationnels et directionnels spécifiques de l'interaction de ce type de laser avec les verres. Le mécanisme associé fait probablement intervenir l'inclinaison du front de la phase du champ de l'impulsion par rapport au déplacement du faisceau dans le solide. La précipitation des cristaux LiNbO3 orientés dans le verre avec l'irradiation laser femtoseconde est réalisée dans le cas d'une fréquence de répétition élevée (typ. 300 kHz) permettant l'accumulation de chaleur. Des cristaux orientés avec leur axe polaire aligné dans la direction d'inscription du laser ont été fabriqués en manipulant le gradient de température par le réglage des paramètres du laser. L'imagerie microscopique de génération de seconde harmonique (GSH) montre le caractère cristallin asymétrique et fournit des informations sur les orientations dominantes favorisées lors des processus de cristallisation. Les résultats de diffraction d'électrons rétrodiffusés (EBSD) fournissent des informations détaillées sur l'orientation des cristaux et révèlent la structure des lignes écrites notamment tailles et dispersion des orientations. En outre, des débuts de modélisation ont été réalisés pour se diriger vers une maîtrise de l'écriture de structures linéaires cristallines. Une autre section du mémoire rapporte l'étude de reformation par l'irradiation avec le laser femtoseconde de nanoparticules d'or quasi-sphériques ou quasi-tige dans le verre à base de silice. Les nanoparticules d'or de la taille de 3-4 nm ont été précipitées par traitement thermique. Après l'irradiation par le laser, des mesures optiques d'absorption, de biréfringence et de dichroïsme ont été effectuées pour étudier la modification de la forme de nanoparticules d'or dans le verre. Les simulations théoriques ont été menées pour interpréter les résultats expérimentaux basés sur la théorie de Gans et le modèle de Drude avec les constantes diélectriques connus de l'or. Enfin, des stratégies de conception efficaces sont aussi suggérées pour le futur pour des applications possibles utilisant la précipitation, la forme et l'orientation des micro/nanoparticules en 3D.
5

Analyses des forces photo-­induites par le laser femtoseconde dans les verres à base de silice

Desmarchelier, Rudy 04 July 2014 (has links) (PDF)
Au delà du simple dépôt d'énergie obtenu par des lasers à impulsions longues, le laser femtoseconde conduit à la création de forces agissant sur la matière qui impriment une nanostructuration en volume dans la silice classée dans les dommages de type II. Si on s'avérait capable de maîtriser ces forces, on pourrait alors dépasser les applications actuelles des lasers et ouvrir de nouvelles possibilités en sciences des matériaux. Une partie de cette thèse vise à caractériser et à comprendre les transformations induites par le laser.Dans un premier temps, cette thèse contribue à l'amélioration de nos connaissances concernant la sensibilité de l'interaction à la direction d'écriture et de la polarisation. A travers l'étude des propriétés optiques de la biréfringence linéaire et de l'analyse fine des observations des traces d'interaction, on a pu mettre en évidence son origine dans l'asymétrie spatiale du faisceau et conforter le modèle de la biréfringence de forme à l'origine d'une forte biréfringence. L'ensemble des études a permis la détermination des mécanismes physiques mis en jeu lors de l'irradiation laser en volume.La seconde découverte, également à la base de cette thèse, est la présence d'une chiralité photo-induite. Dans ce sens, nous avons étudié les propriétés circulaires mais la caractérisation de celles-ci soulève des problèmes techniques : les mesures sont faussées en raison de la présence simultanée de fortes propriétés linéaires et de faibles propriétés circulaires. Néanmoins, l'interprétation des mesures mettent en évidence la présence d'une circularité sans pour autant la quantifié.

Page generated in 0.0448 seconds