• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude des propriétés d’électrolytes solides et d’interfaces dans les microbatteries tout solide : Cas du LiPON et des électrolytes soufrés / Study of the solid-state electrolytes and interface properties in all-solid-state microbatteries : Case of LiPON and sulfide electrolytes.

Morin, Pierrick 24 January 2019 (has links)
Le couplage de la spectroscopie d’impédance électrochimique(EIS) et de la spectroscopie photoélectronique à rayonnement X(XPS) a permis d’étudier en profondeur le lien entre la structure etles propriétés électrochimiques d’électrolytes solides en couchesminces, ainsi que de l’interface formée avec le matériau d’électrodepositive LiCoO2. L’incorporation d’azote dans la structure duLiPON, électrolyte solide de référence dans les microbatteries, estcaractérisée par la formation de lacunes de lithium et d’oxygènesfavorables au transport des ions lithium. Un électrolyte solideLiPOS a été développé par pulvérisation cathodique radiofréquencevia l’incorporation de soufre dans la structure initiale Li3PO4. Laprésence d’une interface solide/solide entre le LiPON et LiCoO2 estcaractérisée par une réduction partielle du cobalt et une oxydationdu LiPON à son voisinage, vraisemblablement responsable del’augmentation de la résistance de transfert de charges entre lesdeux matériaux. / The link between the structure and the electrochemicalproperties of thin-film electrolytes and the interface formed withthe cathode material LiCoO2 has been intensively studied bycoupling Electrochemical Impedance Spectroscopy (EIS) and X-rayPhotoelectron Spectroscopy (XPS). Nitrogen incorporation intoLiPON, reference solid-state electrolyte for microbatteries, ischaracterized by the formation of lithium and oxygen vacancies,increasing the lithium ions transport. A sulfide based thin filmelectrolyte called LiPOS has been developed by radiofrequencysputtering, with the incorporation of sulfur into the initial Li3PO4structure. The solid/solid interface between LiPON and LiCoO2 ischaracterized by a partial reduction of cobalt and oxidation ofLiPON, which is in all probability responsible of the increase of thecharge transfer resistance between the two materials.
2

Structure et mobilité ionique dans les matériaux d’électrolytes solides pour batteries tout-solide : cas du grenat Li7-3xAlxLa3Zr2O12 et des Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3 / Structure and ionic mobility in solid electrolyte materials for all-solid-state batteries : case study of Li7-3xAlxLa3Zr2O12 garnet and Li1.15-2xMgxZr1.85Y0.15(PO4)3 Nasicon

Castillo, Adriana 19 December 2018 (has links)
L’un des enjeux pour le développement des batteries tout-solide est d’augmenter la conductivité ionique des électrolytes solides. Le sujet de la thèse porte sur l’étude de deux types de matériaux d’électrolytes solides inorganiques cristallins: les Grenat Li7- 3xAlxLa3Zr2O12 (LLAZO) et les Nasicon Li1.15- 2xMgxZr1.85Y0.15(PO4)3 (LMZYPO). L’objectif de cette étude est de comprendre dans quelle mesure les propriétés conductrices des matériaux étudiés sont impactées par des modifications structurales générées soit par un procédé de traitement particulier, soit par une modification de la composition chimique, et ce grâce au croisement des données structurales acquises par diffraction des rayons X (DRX) et Résonance Magnétique Nucléaire (RMN) MAS avec des données de dynamique des ions déduites de mesures de RMN en température et de spectroscopie d’impédance électrochimique (SIE).Les poudres ont été synthétisées après optimisation des traitements thermiques par méthode solide-solide ou solgel. La densification des pastilles utilisées pour les mesures de conductivité ionique par SIE a été réalisée par la technique de frittage Spark Plasma Sintering (SPS).Dans le cas des grenats LLAZO, l’originalité de notre travail est d’avoir montré qu’un traitement de frittage par SPS, au-delà de la densification attendue des pastilles, engendre également des modifications structurales qui ont des conséquences directes sur la mobilité des ions lithium dans le matériau et par conséquent sur la conductivité ionique. Une augmentation franche de la dynamique microscopique des ions lithium après frittage par SPS a en effet été observée par des mesures en température de RMN de 7Li et le suivi des constantes de relaxation.La deuxième partie de l’étude constitue un travail exploratoire sur la substitution de Li+ par Mg2+ dans LMZYPO. Nous avons ainsi étudié les propriétés de conduction ionique de ces composés mixtes Li/Mg, en parallèle d’un examen minutieux des phases cristallines formées. Nous avons notamment montré que la présence de Mg2+ favorise la formation des phases β’ (P21/n) et β (Pbna) moins conductrices ce qui explique la diminution de la conductivité ionique avec le taux de substitution de Li+ par Mg2+ observée dans ces matériaux de type Nasicon.Nos travaux soulignent donc l’importance primordiale des effets de structure sur les propriétés de matériaux d’électrolytes solides de type céramique. / One of the issues for the development of all-solid-state batteries is to increase the ionic conductivity of solid electrolytes. The thesis work focuses on two types of materials as crystalline inorganic solid electrolytes: a Garnet Li7-3xAlxLa3Zr2O12 (LLAZO) and a Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3 (LMZYPO). The objective of this study is to understand to what extent the conduction properties of the studied materials are impacted by structural modifications generated either by a particular treatment process, or by a modification of the chemical composition. Structural data acquired by X-ray diffraction (XRD) and Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) were then crossed with ions dynamics data deduced from NMR measurements at variable temperature and electrochemical impedance spectroscopy (EIS).The powders were synthesized after optimizing thermal treatments using solid-solid or sol-gel methods. Spark Plasma Sintering (SPS) technique was used for the densification of the pellets used for ionic conductivity measurements by EIS.In the case of garnets LLAZO, the originality of our work is to have shown that a SPS sintering treatment, beyond the expected pellets densification, also generates structural modifications having direct consequences on the lithium ions mobility in the material and therefore on the ionic conductivity. A clear increase of the lithium ions microscopic dynamics after SPS sintering was indeed observed by variable temperature 7Li NMR measurements and the monitoring of the relaxation times.The second part of the study provides an exploratory work on the substitution of Li+ by Mg2+ in LMZYPO. We studied the ionic conduction properties of these mixed Li/Mg compounds, in parallel with a fine examination of the crystalline phases formed. We have showed in particular that the presence of Mg2+ favors the formation of the less conductive β’ (P21/n) and β (Pbna) phases, which explains the decrease of the ionic conductivity with the substitution level of Li+ by Mg2+ observed in these Nasicon type materials.Our work therefore highlights the crucial importance of structural effects on the conduction properties of ceramic solid electrolyte materials.
3

Using experiment and first-principles to explore the stability of solid electrolytes for all-solid-state lithium batteries

Benabed, Yasmine 01 1900 (has links)
Cotutelle entre l'Université de Montréal et l'Université catholique de Louvain / Les batteries aux ions lithium (BIL) sont considérées comme la technologie la plus prometteuse en matière de stockage d’énergie. Elles possèdent les plus hautes densités d’énergie connues, permettant la miniaturisation constante des appareils électroniques commercialisés. La recherche dans le domaine des BIL s’est plus récemment tournée vers leur implémentation dans les véhicules électriques, qui nécessitera de plus hautes densités d’énergie et de puissance . Une manière concrète d’augmenter la densité d’énergie d’une BIL est d’en augmenter le voltage de cellule. Pour se faire, la nouvelle génération de batteries sera composée de matériaux d’électrode positive à haut potentiel (tel que LiMn1.5Ni0.5O4 avec un potentiel de 4.7 V vs. Li+ /Li) et de lithium métallique en électrode négative. Néanmoins, l’introduction de ces matériaux d’électrode positive à haut potentiel est limitée par la stabilité électrochimique de l’électrolyte liquide conventionnel, composé d’un sel de lithium et de solvants organiques (typiquement LiPF6 + EC/DEC), qui s’oxyde autour de 4.2 V vs. Li+/Li , . L’utilisation du lithium métallique comme électrode négative est entravée par la nature liquide de l’électrolyte conventionnel, qui n’offre pas assez de résistance mécanique pour empêcher la formation de dendrites de lithium, causant à terme le court-circuit de la batterie. De tels courts-circuits présentent un risque d’incendie car les électrolytes liquides sont composés de solvants organiques inflammables à basse température, posant un sérieux problème de sécurité. Les électrolytes solides, de type céramique ou polymères, sont développés en alternative aux électrolytes liquides. Ils ne contiennent aucun solvant inflammable et sont stables à haute température. Ils constituent l’élément clé d’une nouvelle génération de batteries au lithium dite batteries au lithium tout-solide. Ces dernières sont développées pour répondre à des attentes élevées en termes de sécurité, de stabilité et de haute densité d’énergie. Les électrolytes solides doivent satisfaire un certain nombre d'exigences avant de pouvoir être commercialisés, notamment posséder une conductivité ionique élevée, une large fenêtre de stabilité électrochimique et une conductivité électronique négligeable. Ces propriétés constituent les critères les plus importants à prendre en compte pour la sélection de matériaux d’électrolytes solides. Cependant, on remarque dans la littérature que la majorité des études se concentre sur la conductivité ionique des électrolytes solides, reléguant au second plan l’exploration de leurs stabilité électrochimique et conductivité électronique. La fenêtre de stabilité électrochimique a longtemps été annoncée comme étant très large chez les électrolytes solides céramiques (au moins de 0 à 5 V vs. Li+/Li). Néanmoins, des études plus récentes tendent à démontrer que la valeur de cette fenêtre dépend grandement de la méthode électrochimique utilisée pour la mesurer, et qu’elle est de surcroit souvent surestimée. Dans ce contexte, le premier objectif de cette thèse a été de développer une méthode pertinente pour déterminer la fenêtre de stabilité des électrolytes solides avec précision. Cette méthode a été optimisée et validée sur des électrolytes solides céramiques phare comme Li1.5Al0.5Ge1.5(PO4)3, Li1.3Al0.3Ti1.7(PO4)3 et Li7La3Zr2O12. Quant à la conductivité électronique, elle est rarement étudiée dans les électrolytes solides, qui sont considérés comme isolants électroniques compte tenu de leur large bande interdite. Cela dit, de récentes études à ce sujet prouvent que malgré leur bande interdite, les électrolytes solides peuvent générer de la conductivité électronique par le biais de défauts, et que celle-ci, même faible, peut éventuellement mettre l’électrolyte en échec. Pour cette raison, le second objectif de ce projet de thèse a été d’explorer la formation de défauts dans les électrolytes solides afin de déterminer leur effet sur la génération de conductivité électronique. Pour avoir une vision d’ensemble, les premiers-principes ont été utilisés pour étudier six électrolytes solides largement utilisés notamment LiGe2(PO4)3, LiTi2(PO4)3, Li7La3Zr2O12, et Li3PS4. / Lithium-ion batteries (LIBs) are considered the most promising energy storage technology. LIBs electrode materials have the highest known energy densities, allowing the constant miniaturization of commercial electronic devices. Research in the field of LIBs has more recently turned to their implementation in electric vehicles, which will require higher energy and power densities . A concrete way to increase the energy density of LIBs is to increase the cell voltage. To do so, the new generation of batteries will be composed of high potential positive electrode materials (such as LiMn1.5Ni0.5O4 with a potential of 4.7 V vs. Li+/Li) and metallic lithium in the negative electrode. Nevertheless, the introduction of these high potential positive electrode materials is limited by the electrochemical stability of conventional liquid electrolytes, composed of a lithium salt and organic solvents (LiPF6 + EC/DEC), which gets oxidized around 4.2 V vs. Li+/Li , . The use of metallic lithium as the negative electrode is also hindered by the liquid nature of the conventional electrolyte, which does not offer enough mechanical resistance to prevent the formation of lithium dendrites, ultimately causing a short-circuit of the battery. Such short-circuits are likely to lead to thermal runaway because liquid electrolytes are composed of organic solvents that are flammable at low temperature, posing a serious safety issue. Solid electrolytes, based on ceramics or polymers, are developed as an alternative to liquid electrolytes. They contain no flammable solvents and are stable at high temperatures. They are the key element of a new generation of lithium batteries called all-solid-state lithium batteries. These are developed to meet high expectations in terms of safety, stability and high energy density. Solid electrolytes must satisfy a number of requirements before they can be commercialized, including possessing a high ionic conductivity, a wide electrochemical stability window and negligible electronic conductivity. These properties are the most important criteria to consider when selecting solid electrolyte materials. However, the majority of studies found in the literature focuses on the ionic conductivity of solid electrolytes, overshadowing the exploration of their electrochemical stability and electronic conductivity. The electrochemical stability window has long been reported to be very wide in ceramic solid electrolytes (at least from 0 to 5 V vs. Li+/Li). Nevertheless, more recent studies tend to show that the value of this window depends greatly on the electrochemical method used to measure it, and that it is often overestimated. In this context, the first objective of this thesis was to develop a relevant method to determine the stability window of solid electrolytes with precision. This method was optimized and validated on flagship ceramic solid electrolytes such as Li1.5Al0.5Ge1.5(PO4)3, Li1.3Al0.3Ti1.7(PO4)3 and Li7La3Zr2O12. As for the electronic conductivity, it is scarcely studied in solid electrolytes, which are considered as electronic insulators given their wide band gaps. That being said, more recent studies on this subject proved that despite their band gap, solid electrolytes can generate electronic conductivity through defects, and that electronic conductivity, even if it is weak, can eventually cause the failure of the electrolyte. For this reason, the second objective of this thesis project was to explore the formation of defects in solid electrolytes in order to determine their effect on the generation of electronic conductivity. To get a better overview, first-principles were used to investigate six widely used ceramic solid electrolytes, including LiGe2(PO4)3, LiTi2(PO4)3, Li7La3Zr2O12, and Li3PS4.

Page generated in 0.0629 seconds