Spelling suggestions: "subject:"aquation dde szegő"" "subject:"aquation dde szego""
1 |
Instabilité et croissance des normes de Sobolev pour certaines EDP hamiltoniennes / Instability and growth of Sobolev norms for certain Hamiltonian PDEsThirouin, Joseph 02 July 2018 (has links)
Cette thèse est consacrée à l'étude de solutions globales et régulières de certaines EDP hamiltoniennes, du point de vue de la croissance de leurs normes de Sobolev. Un tel phénomène traduit une modification de la répartition de l'énergie dans l'espace des fréquences, appelée parfois "turbulence faible". On étudie d'abord une équation d'évolution non-linéaire où intervient un laplacien fractionnaire, et l'on prouve des estimées a priori sur la vitesse de croissance des normes de Sobolev. On introduit ensuite une équation où de telles estimées sont optimales : une équation de Szegő, intégrable, avec une non-linéarité quadratique, et où certaines solutions régulières croissent à vitesse exponentielle tout en restant bornées dans l'espace d'énergie. On classifie les ondes progressives de cette équation de Szegő quadratique, et l'on met en évidence l'instabilité d'une partie d'entre elles. Enfin, on exhibe pour cette équation une hiérarchie de lois de conservation, qui permet d'étudier plus précisément les solutions rationnelles turbulentes. / In this thesis we study global smooth solutions of certain Hamiltonian PDEs, in order to capture the possible growth of their Sobolev norms. Such a phenomenon is typical for what is sometimes called "weak turbulence" : a change in the distribution of energy between Fourier modes. We first study a nonlinear evolution equation involving a fractional Laplacian, and we prove a priori estimates on the growth of Sobolev norms. We then introduce an equation where these estimates turn out to be optimal : an integrable Szegő equation with a quadratic nonlinearity, which admits exponentially growing smooth solutions that remain bounded in the energy space. We classify the traveling wave solutions of this quadratic Szegő equation, and show that some of them are unstable. Eventually we find a hierarchy of conservation laws for this equation, which leads us into a deeper study of rational turbulent solutions.
|
2 |
Sur certains systèmes hamiltoniens liés à l’équation de Szegő cubique / On certain Hamiltonian systems related to the cubic Szegő equationXu, Haiyan 14 September 2015 (has links)
Cette thèse est principalement consacrée à l’étude du comportement en temps long de solutions de certaines équations aux dérivées partielles hamiltoniennes, du type i∂_t u=X_H (u), en particulier l’existence globale, la croissance des normes de Sobolev, la diffusion et l’approximation par la dynamique résonante.Dans ce contexte, nous considérons d’abord une perturbation de l’équation de Szegő cubique par un potentiel linéaire, i∂_t u=∏ |u|² u+α∫ u,α∈R, (α-Szegő) où ∏▒ désigne le projecteur de Szegő sur les fréquences positives. Pour α=0, cette équation est l’équation de Szegő cubique, étudiée récemment par Gérard et Grellier comme modèle mathématique d’équation non linéaire et non dispersive. Pour l’équation (α–Szegő), nous établissons le caractère bien posé et la complète intégrabilité, et étudions la dynamique des valeurs singulières des opérateurs de Hankel associés. En outre, nous montrons les propriétés suivantes pour cette équation, sur une classe de sous–variétés invariantes de dimensions finies arbitrairement grandes : si α<0, toute trajectoire est relativement compacte, et toute norme de Sobolev est bornée le long de cette trajectoire. Siα>0, il existe des trajectoires le long desquelles toutes les normes de Sobolev de régularité plus grande que ½ tendent exponentiellement vers l’infini en temps.Dans une seconde partie, nous étudions un système mixte Schrödinger–ondes sur le cylinder (x,y)∈R×T , i∂_t U+∂_xx U-|D_y |U=|U|² U,(WS)En adaptant une idée de Hani–Pausader–Tzvetkov–Visciglia, nous établissons une théorie du scattering modifiée reliant les petites solutions de cette équation et les petites solutions de l’équation de Szegő cubique. En combinant cette théorie du scattering avec un résultat récent de Gérard–Grellier, nous en déduisons l’existence de solutions globales de (WS) qui sont non bornées dans l’espace L_x² H_y^s (R×T) pour tout s>½ . / The main purpose of this Ph.D. thesis is to study the long time behavior of solutionsto some Hamiltonian PDEs, i∂_t u=X_H (u), including global existence, growth of high Sobolev norms, scattering and long time approximation by resonant dynamics.In this context, at first we consider the Szegő equation on the circle S1 perturbed bya linear potential, i∂_t u=∏ |u|² u+α∫ u,α∈R, (α-Szegő) where ∏ is the projector onto the non-negative frequencies. For α=0, it turns out tobe the cubic Szegő equation, which was recently introduced by Gérard and Grellier as amathematical toy model of a non-linear totally non dispersive equation.We study the global well-posedness, the integrability and the dynamics of the singularvalues of the related Hankel operators of the α –Szegő equation. Moreover, we establishthe following properties for this equation on a class of invariant submanifolds, with anarbitrary large dimension. For α<0, any trajectory is relatively compact, and all theSobolev norms are bounded on it. For α>0, there exist trajectories on which everySobolev norm of regularity s>½ , exponentially tends to infinity in time.Second, we study the wave-guide Schrödinger equation posed on the spatial domain(x,y)∈R×T ,i∂_t U+∂_xx U-|D_y |U=|U|² U,(WS)Adapting an idea by Hani–Pausader–Tzvetkov–Visciglia, we establish a modified scattering theory between small solutions to this equation and small solutions to the cubic Szegő equation. Combining this scattering theory with a recent result by Gérard–Grellier, we infer existence of global solutions to (WS) which are unbounded in the space L_x^2 H_y^s (R×T) for every s>½ .
|
Page generated in 0.0938 seconds