• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude expérimentale paramétrique des propriétés et transitions de l'écoulement intra-cavitaire en cavité ouverte et contrôle de l'écoulement / Experimental parametric study of properties and transitions of the flow inside an open cavity and control of the flow

Douay, Christelle 04 June 2014 (has links)
Ce travail porte sur la caractérisation de la dynamique intra-cavitaire en cavité ouverte, dont il existe peu d'études expérimentales, ainsi que sur le contrôle de cet écoulement. Nous avons réalisé une étude paramétrique des régimes primaire et secondaire de l'écoulement dans lesquels des structures de type Taylor-Görtler apparaissent. Nous avons identifié les seuils de bifurcation et montré leur nature systématiquement supercritique. Nous avons également montré que différentes familles de modes propagatifs ou stationnaires pouvaient être sélectionnées en fonction de la géométrie de la cavité. Cela a confirmé des prédictions réalisées dans des analyses de stabilité linéaire de l'écoulement de base. Nous avons montré que le régime secondaire résulte de la superposition d'ondes propagatives gauche et droite. Une tentative d'identification des coefficients des équations complexes couplées de Ginzburg-Landau décrivant cette dynamique a été conduite mais la sensibilité des coefficients à de multiples paramètres n'a pas permis d'obtenir des coefficients physiquement acceptables. Un forçage des oscillations de la couche cisaillée a été entrepris à l'aide d'un actionneur plasma froid à décharge à barrière diélectrique placé en amont de la cavité. L'analyse de la réponse de l'écoulement à un forçage périodique d'amplitude variable a permis d'identifier des plages d'accrochage en fréquence. Enfin, nous avons réalisé un contrôle en boucle fermée des oscillations de la couche cisaillée à l'aide d'une loi de contrôle à retard proposée par Pyragas dans le cadre des systèmes dynamiques chaotiques. / This work is devoted to the characterization of the dynamic inside an open cavity flow, for which few experimental studies exist. A control of the flow has been also investigated. We have performed a parametric study of the first and second regime of the flow for which Taylor-Görtler vortices type appear. Bifurcation thresholds have been identified and their systematic supercritical nature has been highlighted. We have also showed that different family of propagating or stationary modes can be selected depending on the geometry of the cavity. This has confirmed predictions obtained by linear stability analysis of the base flow in the literature. We have showed that the second regime results from the superposition of left and right propagating waves. We attended to identify coefficients of the complex coupled Ginzburg-Landau equations that describe the dynamics but the values of the coefficients are sensitive to multiple parameters. A control of oscillations of the shear layer has been achieved by the mean of a plasma actuator with dielectric barrier discharge located upstream of the cavity. Locked regimes have been identified by the analysis of the flow response to a periodic perturbation with different amplitude. Finally, we have performed a closed loop control of the oscillations of the shear layer using a delay feedback control law proposed by Pyragas in the context of chaotic dynamical systems.
2

INSTABILITE DE SYSTEMES HAMILTONIENS AU SENS DE CHIRIKOV ET BIFURCATION DANS UN PROBLEME D' EVOLUTION NON LINEAIRE ISSU DE LA PHYSIQUE

Guillet, Christophe 06 December 2004 (has links) (PDF)
Nous mettons en évidence une condition géométrico-dynamique minimale créant de l'hyperbolicité au voisinage d'un tore homocline transverse partiellement hyperbolique dans un système Hamiltonien presque intégrable à trois degrés de liberté. On en déduit une généralisation du théorème de dynamique symbolique d'Easton. Nous donnons ensuite une estimation optimale du temps de diffusion d'Arnold le long d'une chaîne de transition dans les systèmes Hamiltoniens initialement hyperboliques à trois degrés de liberté en utilisant une chaîne d'orbites périodiques hyperboliques sous-jacente. <br />Nous décrivons ensuite géométriquement à partir d'un système Hamiltonien presque intégrable à trois degrés de liberté à deux paramètres dû à Chirikov, un mécanisme de diffusion mettant en jeu un réseau de plans résonnants parallèles et voisins et un plan résonnant transversal au réseau. Ainsi, nous montrons qu'en dessous d'un certain seuil atteint par le paramètre prépondérant, on peut construire une orbite de transition dérivant en action à travers ce réseau modulationnel. Un des scénarii envisagés, le mécanisme de diffusion modulationnelle, basé sur l'existence de connexions hétéroclines entre tores partiellement hyperboliques issus de deux plans résonnants distincts est valide lorsqu'une condition de chevauchement est vérifiée. <br />Nous étudions enfin le modèle bidimensionnel décrivant un écoulement laminaire avec convection mixte entre deux plaques planes puis dans un tube vertical. Avec des conditions aux bords réduites, nous montrons via le théorème de la variété centrale qu'il existe dans le premier cas une bifurcation de pitchfork pour une valeur critique du nombre de Rayleigh.

Page generated in 0.1118 seconds