Spelling suggestions: "subject:"equations dde javier stokes"" "subject:"equations dde javier vstokes""
1 |
Ondelettes pour la simulation des écoulements fluides incompressibles en turbulenceDeriaz, Erwan 27 March 2006 (has links) (PDF)
Cette thèse développe des méthodes d'ondelettes originales en vue de simuler des écoulements incompressibles.<br />Nous commencerons par présenter une certaine manière de concevoir le phénomène de la turbulence dans les fluides, puis nous ferons une introduction à la théorie des ondelettes.<br />Dans le but de construire des ondelettes 2D et 3D adaptées aux écoulements fluides, nous reprenons en les enrichissant les travaux de P-G Lemarié-Rieusset et K. Urban sur les ondelettes à divergence nulle. Nous mettons en évidence l'existence d'algorithmes rapides associés.<br />Par la suite, nous démontrons qu'il est possible d'utiliser ces ondelettes à divergence nulle pour définir la décomposition de Helmholtz d'un champ de vecteurs 2D ou 3D quelconque. Cette décomposition est définie par un algorithme itératif dont nous prouvons la convergence pour des ondelettes particulières. L'optimisation de la convergence fait ensuite l'objet d'une étude poussée.<br />Tous ces ingrédients permettent de définir une nouvelle méthode de résolution des équations de Navier-Stokes incompressible, dont nous prouvons la faisabilité sur un cas test.<br />On applique également la décomposition en ondelettes à divergence nulle à l'analyse de champs d'écoulements turbulents 2D et 3D, ainsi qu'à la compression dans une méthode d'Extraction de Structures Cohérentes.
|
2 |
Écoulement bi-fluide avec interface diffuse : présentation d'une nouvelle méthode de projection pour le modèle Navier-Stokes/Allen-CahnNdetchoua Kouamo, Gerard Lionel 12 November 2023 (has links)
Cette thèse porte sur la simulation numérique des écoulements bi-fluides par l'approche à interface diffuse. La description mathématique d'un écoulement bi-fluide par l'approche à interface diffuse consiste en une équation de Navier-Stokes modifiée couplée à un modèle de capture de l'interface mobile entre les deux fluides. Dans cette thèse, pour la capture de l'interface mobile nous avons porté notre attention sur le modèle de Allen-Cahn. En premier lieu nous nous sommes intéressés de prime abord à la résolution numérique du système semi-discrétisé en temps et totalement implicite Navier-Stokes/Allen-Cahn (NSAC). Pour ce faire nous avons développé un algorithme itératif basé sur la méthode du point fixe. Nous avons montré qu'à chaque itération, le système d'équations (contenu dans l'algorithme) est bien défini ; de plus, la solution de l'équation de Allen-Cahn satisfait le principe du maximum. Par la suite nous avons montré que l'algorithme de point fixe converge et que sa limite est la solution du système NSAC semi-discret. Si cette première méthode itérative nous a donné une méthode de résolution, elle n'est pas satisfaisante quant à la performance. En second lieu nous proposons un nouveau schéma de discrétisation en temps à pas fractionnaire inconditionnellement stable. Utilisant une approche de type point fixe (une projection couplée) nous avons montré la convergence à chaque pas de temps et que la limite correspond à la solution du système semi-discret (donnant ainsi l'existence et l'unicité de la solution). Nous concluons enfin avec des applications numériques aux fins d'illustrer la pertinence et les potentielles limitations du modèle d'une part, puis les performances de notre méthode de résolution du système Navier-Stokes/Allen-Cahn d'autre part.
|
3 |
Détermination numérique des solutions du système de Navier-Stokes périodiques dans une dimension spatialeNon, Étienne 17 April 2018 (has links)
Dans cette thèse, nous développons et mettons en oeuvre une méthode numérique de discrétisation spatiale entièrement tridimensionnelle afin d'étudier la transition des écoulements visqueux et incompressibles dans un canal infiniment long, d'un état stable et bidimensionnel à un état tridimensionnel. Le principe de stabilité linéaire permet de déterminer l'apparition d'une telle bifurcation et la théorie des systèmes dynamiques montre que l'écoulement au voisinage de la solution stable bidimensionnelle considérée tend alors à suivre une direction privilégiée. Dans certains cas il en résulte un écoulement tridimensionnel et périodique qu'il n'est possible de décrire qu'en adoptant une approche entièrement tridimensionnelle. Nous avons adopté une approche combinant la robustesse de la méthode des éléments finis à la précision des méthodes de Fourier. La théorie de la méthode de discrétisation est expliquée, un code est validé en utilisant plusieurs bancs d'essai et la description qualitative du comportement local de l'écoulement après bifurcation est présentée.
|
4 |
Décomposition de domaine pour des systèmes issus des équations de Navier-Stokes / Domain decomposition for systems deriving from Navier-Stokes equationsCherel, David 12 December 2012 (has links)
Les équations fondamentales décrivant la dynamique de l'océan sont en théorie les équations de Navier-Stokes sur une sphère en rotation, auxquelles il faut a jouter une équation d'état pour la densité, et des équations de transport-diffusion pour les traceurs. Toutefois, un certain nombre de considérations physiques et de limitations pratiques ont nécessité le développement de modèles plus simples. En effet, un certain nombre d'hypothèses simplificatrices sont pleinement justifiées du point de vue de la physique des mouvements océaniques, dont les principales sont les approximations de couche mince et de Boussinesq. D'autre part, étant donné les dimensions des bassins océaniques (plusieurs centaines à plusieurs milliers de kilomètres), les coûts de calculs sont un facteur pratique extrêmement limitant. On est, à l'heure actuelle, capable de simuler l'océan mondial avec une résolution de l'ordre de dix kilomètres, en utilisant des modèles dits aux équations primitives, dont le coût de calcul est bien inférieur à celui des équations de Navier-Stokes. On est donc bien loin d'une modélisation complète des phénomènes décrits par ces équations, qui nécessiterait en théorie de considérer des échelles de l'ordre du millimètre. Les équations primitives sont issues des équations complètes de la mécanique des fluides en effectuant l'approximation hydrostatique, justifiée par la faible profondeur des domaines considérés au regard de leur dimension horizontale. Dans cette thèse, nous considérerons les équations de Navier-Stokes (NS) qui sont le coeur du modèle complet évoqué ci-dessus, sans prendre en compte les équations de la densité et des traceurs (salinité, température, etc.). Nous utiliserons l'approximation hydrostatique dans le chapitre 10, et le modèle sera naturellement appelé Navier-Stokes hydrostatique (NSH). Il correspond aux équations primitives dans lesquelles on ne prendrait pas en compte la densité et les traceurs. C'est dans ce cadre que se situe le travail présenté dans cette thèse, avec l'objectif à moyen terme de pouvoir coupler de façon rigoureuse et efficace les équations de Navier-Stokes avec les équations primitives. Dans une première partie, on présentera quelques rappels sur les équations de Navier-Stokes, leur discrétisation, ainsi que le cas-test de la cavité entraînée qui sera utilisé dans tout ce document. Dans une deuxième partie, on met en œuvre les méthodes de Schwarz sur les équations de Stokes et Navier-Stokes, en dérivant notamment des conditions absorbantes exactes et approchées pour ces systèmes. Enfin, dans une troisième partie, on proposera des pistes vers le couplage Navier-Stokes/Navier-Stokes hydrostatique décrit ci-dessus. / Fundamental equations describing the ocean dynamic are theoretically Navier-Stokes equations over a rotating sphere, whom need to add a state equation for the fluid density, and advection-diffusion equations for tracers. However, some physical considerations and practical limitations required to developped more simple models. Indeed, some simplifying hypotheses are well justified from a ocean dynamic point of view, whose principal ones are thin layer and Boussinesq approximations. On the other hand, considering the dimensions of oceans (from serveral hundreds to serveral thousands kilometers), computations costs are a very practical limitating factor. We are, by now, able to simulate the global ocean with about ten kilometers large grid mesh. This is very far from a complete modelisation of all phenomenes decribed by the Navier-Stokes equations, which require to consider scales of milimeters order. Primitives equations derive from complete equations describing fluid mecanics, by doing the hydrostatic approximations, which is justified by the low deepness of considered domains with regard to their horizontal dimension. In this thesis, we are considering Navier-Stokes equations (NS) which are the heart of the complete modele mentionned previously, without holding in account density and tracers equations. We will use the hydrostatic approximations, and the resulting equations will be named as hydrostatic Navier-Stokes equations (NSH).The mid term objective is to couple carefully Navier-Stokes equations with primitive equation. In a first part, we will remind few results for Navier-Stokes equations, their discretization, and the lid-driven cavity which wil be used as a test-case. In a second part, we will use Schwarz method with Stokes and Navier-Stokes equations, deriving in particular exact and approched absorbing interface conditions for these systems. Finally, in a third part, we shall propose first results towards coupling Navier-Stokes and hydrostatic Navier-Stokes equations.
|
5 |
Simulation de fluide avec des noyaux constants par morceauxSamson, Etienne January 2014 (has links)
La simulation de fluide fait l’objet de recherches actives en infographie. Largement
utilisée dans le domaine des jeux vidéos ou de l’animation, elle permet de simuler le
comportement des liquides, des gaz et autres phénomènes pouvant être apparentés
à un fluide. Pour cela, la simulation de fluide dispose d’outils de calcul numériques
adaptés, permettant de produire des animations visuellement réalistes pour un temps
de calcul raisonnable. Ce mémoire décrit les deux principales approches utilisées en
simulation de fluide : l’approche eulérienne et l’approche lagrangienne, ainsi que certains outils numériques associés, que sont les différences finies et les fonctions de
lissage. Chaque approche et chaque outil numérique possède ses avantages et ses inconvénients. Les noyaux constants par morceaux constituent un nouvel outil de calcul
numérique et ouvrent de nouvelles possibilités à la simulation de fluide. Ils seront étudiés en détails puis intégrés dans une simulation de fluide eulérienne. L’atout notable qu’apportent les noyaux constants par morceaux est la possibilité d’augmenter la précision des calculs là où cela est jugé nécessaire dans la simulation. En augmentant la précision des calculs aux endroits clés, où sont susceptibles d’apparaitre des effets visuellement attrayants comme les tourbillons ou les remous, nous améliorons la qualité des animations.
|
6 |
Sur la résolution numérique du problème de Navier-Stokes tridimensionnel axisymétrique en fonction de courant-vorticitéMonsalve, José 30 June 1982 (has links) (PDF)
.
|
7 |
Modélisation mathématique et numérique du poumon humainSoualah Alila, Assia 06 December 2007 (has links) (PDF)
Nous proposons un modèle mathématique intégré du poumon dont l'approche globale repose sur une modélisation multibloc. En effet, on décompose en trois niveaux l'arbre bronchique qui s'étend sur vingt quatre générations de bronches allant de la trachée aux alvéoles. Au premier niveau (les six premières générations), a lieu un écoulement de Navier-Stokes, qui est simulé directement. Au deuxième niveau (de la génération sept à la génération dix sept), les flux à travers les bronches sont régis par la loi de Poiseuille. La linéarité de cette loi nous permet de condenser cette partie de l'arbre et de proposer des conditions aux bords dissipatives adaptées à la similation de la ventilation et permettant d'éviter le maillage de cette partie géométriquement complexe. Le dernier niveau du modèle, prend en compte la partie distale de l'arbre qui est la zone alvéolaire. Elle est composée des acini, qui agissent comme un ensemble de petites pompes et dont l'effet macroscopique est le moteur même de la respiration. A ce niveau, on propose les déplacements d'un piston comme modèle simplifié des mouvements du diaphragme pulmonaire. Dans un premier temps, on se place dans le cadre particulier des équations de Stokes et on s'intéresse au couplage des deux premiers compartiments, dont la validité est illustrée par des tests numériques. On explique également le calcul de la résistance globale équivalente qui intervient dans le calcul de la condition aux limites qui remplace la zone condensée. L'étude est ensuite généralisée au cas des équations de Navier-Stokes. La difficulté réside dans le contrôle du flux d'énergie cinétique, on introduit alors une classe de conditions aux limites, qu'on désigne par dissipatives essentielles, pour lesquelles la trace du champ de vitesse sur les sections d'entrée et de sorties vit dans un espace de dimension fini, et pour lesquelles on prouve des résultats d'existence de solutions faibles locales en temps pour données quelconques et globales en temps pour données petites. Pour le cas de conditions dites dissipatives naturelles, c'est à dire sans contrainte sur la trace du champ de vitesse, on a existence de solutions faibles locales en temps pour données petites et globales en temps pour données plus petites, mais seulement en dimension deux. Cependant, on prouve pour ces conditions aux limites, que pour une classe de solutions plus régulières on a l'existence d'une unique solution locale en temps ainsi que l'existence d'une solution globale en temps pour données petites. Pour le couplage global, incluant le piston, on prouve l'existence de solutions faibles locales en temps pour des données quelconques en ce qui concerne les conditions aux limites dissipatives essentielles, tandis que pour les conditions dissipatives naturelles, on obtient l'existence de solutions locales en temps pour données petites et toujours seulement en dimension deux. Finalement, on propose une discrétisation en temps du problème global et on établit un bilan énergétique à l'ordre 1 pour le problème régulier en espace et discrétisé en temps. Nous présentons ainsi plusieurs simulations numériques bi-dimensionnelles correspondants aussi bien à un poumon sain que pathologique et notamment asthmatique.
|
8 |
Comportement asymptotique de problèmes posés dans des cylindres. Problèmes d'unicité pour des systèmes de BoussinesqBruyere, Nicolas 17 December 2007 (has links) (PDF)
La thèse est composée de deux parties indépendantes.<br />Dans la première partie, on étudie le comportement asymptotique de problèmes elliptiques et paraboliques à données $L^1+W^{-1,p'}$ (respectivement $L^1+L^p(0,T;W^{-1,p'})$ dans le cas parabolique), dans des domaines devenant infiniment grands. En utilisant le cadre des solutions renormalisées et les résultats de régularité des solutions pour de telles données, on prouve, sous certaines hypothèses structurelles sur les variables d'espace, des résultats de convergence dans les espaces de régularité des solutions.<br />Dans la seconde partie, dans le cas de la dimension $2$, on étudie des systèmes de type Boussinesq. Ces systèmes dérivent de modèles de mécanique des fluides et consistent en un couplage des équations de Navier-Stokes incompressibles et de l'équation de la chaleur. On s'intéresse essentiellement aux questions d'unicité de la solution, particulièrement délicate à prouver du fait du couplage très non linéaire entre les équations. On travaille dans le cadre des solutions faibles pour les équations de Navier-Stokes et dans le cadre des solutions renormalisées pour des problèmes paraboliques pour l'équation de la chaleur. On établit tout d'abord des résultats de régularité pour ces équations puis on montre plusieurs résultats d'existence et d'unicité de la solution du système pour de petites données.
|
9 |
Ondelettes pour la prise en compte de conditions aux limites en turbulence incompressibleKadri Harouna, Souleymane 13 September 2010 (has links) (PDF)
Ce travail de thèse concerne les méthodes numériques à base d'ondelettes pour la simulation de la turbulence incompressible. L'objectif principal est la prise en compte de conditions aux limites physiques dans la résolution des équations de Navier-Stokes. Contrairement aux travaux précédents où la <i>vorticité</i> était décomposée sur base d'ondelettes <i>classiques</i>, le point de vue qui est adopté ici vise à calculer le champ de <i>vitesse</i> de l'écoulement sous la forme d'une série d'ondelettes à divergence nulle. On est alors dans le cadre des équations de Navier-Stokes incompressibles en formulation <i>vitesse-pression</i>, pour lesquelles les conditions aux limites sur la <i>vitesse</i> s'écrivent explicitement, ce qui diffère de la formulation <i>vitesse-tourbillon</i>. Le principe de la méthode développée dans cette thèse consiste à injecter directement les conditions aux limites sur la base d'ondelettes. Ce travail prolonge la thèse de E. Deriaz réalisée dans le cas périodique. La première partie de ce travail a donc été la définition et la mise en œuvre de nouvelles bases d'ondelettes à divergence nulle ou à rotationnel nul sur $[0,1]^n$, permettant la prise en compte de conditions aux limites, à partir des travaux originaux de P. G. Lemarié-Rieusset, K. Urban, E. Deriaz et V. Perrier. Dans une deuxième partie, des méthodes numériques efficaces utilisant ces nouvelles ondelettes sont proposées pour résoudre différents problèmes classiques : équation de la chaleur, problème de Stokes et calcul de la décomposition de Helmholtz-Hodge en non périodique. L'existence d'algorithmes rapides associés rend les méthodes compétitives. La dernière partie est consacrée à la définition de deux nouveaux schémas de résolution des équations de Navier-Stokes incompressibles par ondelettes, qui utilisent les ingrédients précédents. Des expériences numériques menées pour la simulation d'écoulement en cavité entraînée en dimension deux ou le problème de la reconnection de tubes de vortex en dimension trois montrent le fort potentiel des algorithmes développés.
|
10 |
Modélisation XFEM, Nitsche, Level-set et simulation sous FEniCS de la dynamique de deux fluides non misciblesMekhlouf, Réda 28 June 2018 (has links)
À l’heure actuelle, les écoulements à deux fluides non miscibles jouent un rôle très important dans plusieurs domaines, que ça soit en science ou en ingénierie. Leur complexité est tellement élevée que les modèles actuels ne permettent de résoudre que des cas particuliers ou simplifiés avec un degré de précision qui demeurent souvent plutôt modeste. Une nouvelle approche numérique parait être une nécessité pour capturer la complexité physique du phénomène. Pour ce faire nous avons besoin d’outils robustes. Au niveau de l’interface de séparation entre les deux fluides non miscibles, les variables physiques sont discontinues, ce qui pose un défi majeur dans la description des variables et des conditions aux limites à l’interface. Le fait que les densités et les viscosités de chaque fluide soient différentes de part et d’autre de l’interface donne naissance à des défauts et des impuretés dans le champ des vitesses, ce qu’on appelle une discontinuité faible. Pour sa part, l’existence de la force de tension superficielle au niveau de l’interface crée une discontinuité sur le champ de pression, ce qu’on appelle une discontinuité forte. Un autre grand problème se pose au niveau de l’étude numérique du problème, où les méthodes numériques classiques ont une précision assez limitée dans ce genre de situation. L’objectif de ce travail est de fournir une étude complète de la dynamique de l’interface entre deux fluides non miscibles à l’aide d’outils mathématiques, physiques et numériques robustes. D’abord, une étude analytique du problème a été faite où l’équation de Navier-Stokes et les conditions de saut sur les variables physiques au niveau de l’interface de séparation entre les fluides ont été prouvées en détail. Pour traiter les discontinuités, nous avons discrétisé nos variables à l’aide de la méthode XFEM. Dû aux larges distorsions rencontrées dans ce genre d’écoulement, nous avons utilisé l’approche Eulérienne, pour corriger les oscillations des solutions dues aux choix du système de coordonnées nous avons utilisé les techniques de stabilisation SUPG/PSPG. Le traitement de la courbure des interfaces K été fait à l’aide de l’opérateur Laplace Beltrami et le suivi d’interface à l’aide de la méthode ¨Level-set¨. Pour le traitement des conditions de saut au niveau de l’interface la méthode Nitsche est développée dans différents contextes. Après avoir développé un modèle physique et mathématique dans les premières parties de notre travail, nous avons fait une étude numérique à l’aide de la plateforme de calcul FEniCS, qui est une plateforme de développement en langage C++ avec une interface Python. Un code de calcul a été développé dans le cas des écoulements de deux fluides non miscibles avec les modèles physiques et les outils mathématiques développés dans les sections précédentes. / The two-phase flow problems have an important role in the multitude of domains in science and engineering. Their complexity is so high that the actual models can solve only particular or simplified cases with a certain degree of precision. A new approach is a necessity to understand the evolution of new ideas and the physical complexity in this kind of flow, to contribute to the study of this field. A good study requires solid and robust tools to have performing results and a maximum of efficacy. At the interface of separation between the two immiscible fluids, the physical parameters are discontinuous, which gives us difficulties for the description of the physical variables at the interface and boundary conditions. The fact that the density and the viscosity are discontinuous at the interface creates kinks in the velocity, which represent a weak discontinuity. The existence of the surface tension at the interface create a discontinuity for the pressure field, it represents a strong discontinuity. The main objective of this work is to make a complete study based on strong and robust physical, mathematical and numerical tools. A strong combination, capable of capturing the physical aspect of the interface between the two fluids with a very good precision. Building such a robust, cost effective and accurate numerical model is challenging and requires lots of efforts and a multidisciplinary knowledge in mathematics, physics and computer science. First, an analytical study was made where the one fluid model of the Navier-Stokes equation was proved from Newton’s laws and jump conditions at the interface was proved and detailed analytically. To treat the problem of discontinuity, we used the XFEM method to discretize our discontinuous variables. Due to the large distortion encountered in this kind of fluid mechanic problems, we are going to use the Eulerian approach, and to correct the oscillation of solutions we will use the SUPG/PSPG stabilization technic. The treatment of the interface curvature k was done with the Laplace Beltrami operator and the interface tracking with the Level-set method. To treat the jump conditions with a very sharp precision we used the Nitsche’s method, developed in different cases. After building a strong mathematical and physical model in the first parts of our work, we did a numerical study using the FEniCS computational platform, which is a platform of computational development based on C++ with a Python interface. A numerical code was developed in this study, in the case of two-phase flow problem, based on the previous mathematical and physical models detailed in previous sections.
|
Page generated in 0.1437 seconds