Spelling suggestions: "subject:"equivalence tolopogie dde distances"" "subject:"equivalence tolopogie dee distances""
1 |
Statistiques de formes pour la segmentation d'images avec a prioriCharpiat, Guillaume 13 December 2006 (has links) (PDF)
Le but de cette thèse est de construire, à partir d'un ensemble donné d'exemples de contours d'objets, un critère qui exprime quantitativement la ressemblance entre une forme quelconque et ces exemples. Ce critère permettra ainsi d'avoir un a priori sur la forme de l'objet à rechercher dans une nouvelle image à segmenter. On définit tout d'abord mathématiquement l'ensemble de "toutes les formes". L'étude de plusieurs métriques sur cet ensemble conduit à leur équivalence topologique. Une approximation dérivable de la distance de Hausdorff permet alors de construire un chemin entre deux formes quelconques par descente de gradient. Le gradient d'une application dépendant d'une forme est un champ de déformation appartenant à son espace tangent; il dépend de son produit scalaire, qui peut alors être vu comme un a priori sur les champs de déformation en changeant qualitativement les évolutions. Une extension de la notion de gradient à des a priori non linéaires est également proposée. Les champs instantanés de déformation d'une forme vers une autre obtenus par gradient d'une distance permettent de définir la "moyenne" d'un ensemble donné de contours, ainsi que les modes caractéristiques de déformation qui lui sont associés, exprimant la variabilité de la forme dans l'échantillon étudié. De ces statistiques sur les formes on déduit plusieurs critères de segmentation, qui sont testés et illustrés sur quelques exemples. Des statistiques assez similaires sont également menées sur des images (au lieu de formes) dans une approche difféomorphique, testées sur des photographies de visages, puis utilisées dans une tâche de reconnaissance d'expression.
|
Page generated in 0.1626 seconds