• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Untersuchung und Modellierung von Wasserhaushalt und Stofftransportprozessen in grundwassergeprägten Landschaften am Beispiel der Unteren Havel / Experimental and model based investigations of water balance and nutrient dynamics of groundwater influenced floodplains - the example of the Lower Havel River

Krause, Stefan January 2005 (has links)
Das Ziel dieser Arbeit ist die Untersuchung der Wasserhaushaltsprozesse und Stofftransportvorgänge innerhalb der grundwassergeprägten Talauenlandschaften von Tieflandeinzugsgebieten am Beispiel der im Nordostdeutschen Tiefland gelegenen Havel. Die Arbeiten in verschieden skaligen Teileinzugsgebieten der Havel beschäftigen sich dabei zum einen mit der experimentellen Untersuchung und vorrangig qualitativen Beschreibung der Wasserhaushaltsdynamik, zum anderen mit der Entwicklung eines zur quantitativen Analyse von Wasserhaushalts- und Stofftransportprozessen geeigneten Modells und der anschließenden Modellsimulation von Wasserhaushalt und Stickstoffmetabolik im Grundwasser sowie der Simulation von Landnutzungs- und Gewässerstrukturszenarien.<br><br> Für die experimentelle Untersuchung der Abflussbildung und der Wasserhaushaltsprozesse in den Talauenlandschaften des Haveleinzugsgebiets wurde Einzugsgebiet der &#8221;Unteren Havel Niederung&#8220; ein umfangreiches Messnetz installiert. Dabei wurden an mehreren Messstationen und Pegeln meteorologische Parameter, Bodenfeuchte sowie Grundwasserstände und Abflüsse beobachtet. Die Analyse der Messergebnisse führte zu einem verbesserten Verständnis von Wasserhaushaltsprozessen in der durch das oberflächennahe Grundwasser und die Oberflächengewässerdynamik beeinflussten Talauenzone. Darüber hinaus konnten durch die Implementierung der Messergebnisse konsistente Anfangs- und Randbedingungen für die Wasserhaushalts- und Grundwassermodellierung im Modellkonzept IWAN realisiert werden. Mit dem Modell IWAN (Integrated Modelling of Water Balance and Nutrient Dynamics) wurde ein Werkzeug geschaffen, welches die Berücksichtigung spezifischer hydrologischer Eigenschaften von Tieflandauen, wie z. B. den Einfluss des oberflächennahen Grundwassers bzw. der Dynamik von Oberflächenwasserständen auf den Wasserhaushalt, ermöglicht. Es basiert auf der Kopplung des deterministischen distribuierten hydrologischen Modells WASIM-ETH mit dem dreidimensionalen Finite-Differenzen-basierten Grundwassermodel MODFLOW. Die Modellierung der Stickstoffmetabolik im Grundwasser erfolgt durch das mit Grundwassermodell gekoppelte Stofftransportmodel MT3D. Zur modellbasierten Simulation des Wasserhaushalts der Tieflandauenlandschaften wurde das Modellkonzept IWAN für verschieden skalige Teileinzugsgebiete an der Havel für Simulationszeiträume von 2 Wochen bis zu 13 Jahren angewandt. Dabei wurden die Teilmodelle für Wasserhaushalts- und Grundwassermodellierung in zwei unterschiedlichen Teileinzugsgebieten der &#8221;Unteren Havel Niederung&#8220; kalibriert. Die anschließende Validierung erfolgte für das gesamte Einzugsgebiet der &#8221;Unteren Havel&#8220;. Die Unsicherheiten des Modellansatzes sowie die Anwendbarkeit des Modells im Untersuchungsraum wurden geprüft und die Limitierung der Übertragbarkeit auf andere grundwasserbeeinflusste Tieflandeinzugsgebiete analysiert. Die Ergebnisse der Wasserhaushaltssimulationen führen einerseits zum erweiterten Prozessverständnis des Wasserhaushalts in Flachlandeinzugsgebieten, andererseits ermöglichten sie durch die Quantifizierung einzelner Prozessgrößen die Beurteilung der Steuerungsfunktion einzelner Wasserhaushaltsprozesse. Auf der Basis lokaler Simulationsergebnisse sowie geomorphologischer und gewässermorphologischer Analysen wurde ein Algorithmus entwickelt, welcher die Abgrenzung des direkten Eigeneinzugsgebiets der Havel als Raum der direkten Interaktion zwischen Oberflächengewässer und umgebendem Einzugsgebiet beschreibt. Durch Simulation des Wasserhaushalts im Eigeneinzugsgebiet mit dem Modell IWAN konnten die Interaktionsprozesse zwischen Fluss und Talauenlandschaft quantitativ beschrieben werden. Dies ermöglichte eine Bewertung der Abflussanteile aus dem Eigeneinzugsgebiet sowie eine Quantifizierung der zeitlich variablen Retentionskapazität der Auenlandschaft während Hochwasserereignissen. Zur Abschätzung des Einflusses veränderter Landnutzung und angepassten Managements auf den Wasserhaushalt der Talaue wurden Szenarien entwickelt, welche Änderungen der Landnutzung sowie der Gewässergeometrie implizieren. Die Simulation des Wasserhaushalts unter jeweiligen Szenariobedingungen ermöglichte die detaillierte Analyse sich ändernder Randbedingungen auf den Gebietswasserhaushalt und auf die Austauschprozesse zwischen Grundwasser und Oberflächengewässer. Zur Untersuchung der Stickstoffmetabolik im Grundwasser der Talauenlandschaft wurde das im Modellkonzept IWAN integrierte Stofftransportmodell MT3D für das Eigeneinzugsgebiet der Havel angewandt. Dies ermöglichte eine Bilanzierung der aus dem Grundwasser des Eigeneinzugsgebiets stammenden Nitratfrachtanteile der Havel sowie von Nitratkonzentrationen im Grundwasser. Szenariensimulationen, welche verminderte Nitrateinträge aus der durchwurzelten Bodenzone annehmen, ermöglichten die Quantifizierung der Effizienz von Managementmaßnahmen und Landnutzungsänderungen in Hinblick auf die Minimierung von Einträgen in Grundwasser und Oberflächengewässer. / For a sustainable management of lowland river basins, a comprehensive knowledge about floodplain water balance and nutrient transport processes is required. This investigation aims to analyse water balance processes and nutrient dynamics and transport within the groundwater influenced floodplains of lowland areas. Thus, the investigation was focused on the Havel river catchment at the Northeast German Lowlands, which is a typical example of a lowland floodplain. Experimental investigations were performed at different spatial scales for qualitative analysis of water balance. The complex model IWAN was developed which enables the simulation and quantitative analysis of water balance and nutrient dynamics. Furthermore it allows the scenario based simulation and analysis of changing landuse management and boundary conditions.<br><br> For experimental investigation of runoff generation and water balance processes within the floodplains of the Havel river an extensive measurement campaign was installed at several testsites of the 198 km2 catchment of the &#8220;Lower Havel river basin&#8220;. These testsites include stations and gauges for the observation of meteorological parameters, soil moisture, groundwater depths and river runoff. Analysis of the observed data led to an improved understanding of water balance processes within the specific part of the floodplain which is influenced by the dynamics of the uppermost groundwater and by the surface water dynamics. Furthermore the implementation of the observed data within the model concept realised the consistent definition of time variable, spatial distributed initial and boundary conditions. The IWAN model was developed as a tool which implements the speci- fic hydrological characteristics of floodplains within the concept of modelling water balance and nutrient dynamics. It is based on the coupling of the distributed deterministic hydrological model WASIM-ETH with the three-dimensional finite difference based numerical groundwater model MODLFOW. Simulation of the metabolism of nitrogen within the groundwater passage was realised by the nutrient transport model MT3D which was coupled with the groundwater model. For model based simulation of the water balance within lowland river floodplains the IWAN model was applied for different scaled subcatchments of the Havel river with varying sizes from 2 to 1000 km2 and simulation periods from 2 weeks up to 13 years. Calibration of the model was performed for two different sized subcatchments of the &#8220;Lower Havel river basin&#8220;. The subsequent validation of the model focused on the entire &#8220;Lower Havel river basin&#8220;. Uncertainties of the model approach and the limited applicability and transferability for further groundwater influenced floodplain landscapes were analysed. The results of the water balance simulations led to an improved understanding of the processes and dynamics within floodplains. It furthermore enabled the quantification and impact analysis of certain processes and interactions. Based on local simulation results and on the analysis of surface and groundwater morphology an algorithm was developed which was used for delineation of the direct catchment of the Havel river. This direct catchment is specified as the part of the floodplain which is characterised by the direct interaction between river and adjacent catchment. Water balance simulations with the IWAN model in the direct catchment led to the quantification of interaction processes between river and floodplain. This enabled the assessment of the runoff fraction from the direct catchment during the ecologically sensitive low flow periods in summer and of the retention capacity of the floodplain during flood events. For the evaluation of the influences of alternative landuse management on the water balance within floodplains, complex scenarios were developed which implemented alterations of landuse or changes of surface water geometries and drainage structures. Simulation of water balances for each scenario allowed the detailed analysis of changing boundary conditions on the floodplain water balance and on the interaction processes between groundwater and river. Modelling nitrogen metabolism within the groundwater: For investigation of the nitrogen metabolism within the groundwater of floodplains the nutrient transport and dynamics model MT3D, which considers also interactions between groundwater and surface waters, was integrated in the IWAN concept. The model was applied for the simulation of nitrate dynamics within the direct catchment of the Havel river.With this approach, the nitrate loads between groundwater and river could be quantified. In addition, nitrate concentrations within the groundwater were analised in dependence of surface water dynamics. Scenario simulations, assuming a decrease of incoming nitrate loads from the root zone, caused by landuse techniques, led to the quantification of the efficiency of landuse changes and advanced management strategies to inhibit pollution of groundwater and surface waters.
2

Integrated process-based simulation of soil carbon dynamics in river basins under present, recent past and future environmental conditions

Post, Joachim January 2006 (has links)
Soils contain a large amount of carbon (C) that is a critical regulator of the global C budget. Already small changes in the processes governing soil C cycling have the potential to release considerable amounts of CO2, a greenhouse gas (GHG), adding additional radiative forcing to the atmosphere and hence to changing climate. Increased temperatures will probably create a feedback, causing soils to release more GHGs. Furthermore changes in soil C balance impact soil fertility and soil quality, potentially degrading soils and reducing soils function as important resource. Consequently the assessment of soil C dynamics under present, recent past and future environmental conditions is not only of scientific interest and requires an integrated consideration of main factors and processes governing soil C dynamics. To perform this assessment an eco-hydrological modelling tool was used and extended by a process-based description of coupled soil carbon and nitrogen turnover. The extended model aims at delivering sound information on soil C storage changes beside changes in water quality, quantity and vegetation growth under global change impacts in meso- to macro-scale river basins, exemplary demonstrated for a Central European river basin (the Elbe). As a result this study: ▪ Provides information on joint effects of land-use (land cover and land management) and climate changes on croplands soil C balance in the Elbe river basin (Central Europe) presently and in the future. ▪ Evaluates which processes, and at what level of process detail, have to be considered to perform an integrated simulation of soil C dynamics at the meso- to macro-scale and demonstrates the model’s capability to simulate these processes compared to observations. ▪ Proposes a process description relating soil C pools and turnover properties to readily measurable quantities. This reduces the number of model parameters, enhances the comparability of model results to observations, and delivers same performance simulating long-term soil C dynamics as other models. ▪ Presents an extensive assessment of the parameter and input data uncertainty and their importance both temporally and spatially on modelling soil C dynamics. For the basin scale assessments it is estimated that croplands in the Elbe basin currently act as a net source of carbon (net annual C flux of 11 g C m-2 yr-1, 1.57 106 tons CO2 yr-1 entire croplands on average). Although this highly depends on the amount of harvest by-products remaining on the field. Future anticipated climate change and observed climate change in the basin already accelerates soil C loss and increases source strengths (additional 3.2 g C m-2 yr-1, 0.48 106 tons CO2 yr-1 entire croplands). But anticipated changes of agro-economic conditions, translating to altered crop share distributions, display stronger effects on soil C storage than climate change. Depending on future use of land expected to fall out of agricultural use in the future (~ 30 % of croplands area as “surplus” land), the basin either considerably looses soil C and the net annual C flux to the atmosphere increases (surplus used as black fallow) or the basin converts to a net sink of C (sequestering 0.44 106 tons CO2 yr-1 under extensified use as ley-arable) or reacts with decrease in source strength when using bioenergy crops. Bioenergy crops additionally offer a considerable potential for fossil fuel substitution (~37 PJ, 1015 J per year), whereas the basin wide use of harvest by-products for energy generation has to be seen critically although offering an annual energy potential of approximately 125 PJ. Harvest by-products play a central role in soil C reproduction and a percentage between 50 and 80 % should remain on the fields in order to maintain soil quality and fertility. The established modelling tool allows quantifying climate, land use and major land management impacts on soil C balance. New is that the SOM turnover description is embedded in an eco-hydrological river basin model, allowing an integrated consideration of water quantity, water quality, vegetation growth, agricultural productivity and soil carbon changes under different environmental conditions. The methodology and assessment presented here demonstrates the potential for integrated assessment of soil C dynamics alongside with other ecosystem services under global change impacts and provides information on the potentials of soils for climate change mitigation (soil C sequestration) and on their soil fertility status. / Böden speichern große Mengen Kohlenstoff (C) und beeinflussen wesentlich den globalen C Haushalt. Schon geringe Änderungen der Steuergrößen des Bodenkohlenstoffs können dazu führen, dass beträchtliche Mengen CO2, ein Treibhausgas, in die Atmosphäre gelangen und zur globalen Erwärmung und dem Klimawandel beitragen. Der globale Temperaturanstieg verursacht dabei höchstwahrscheinlich eine Rückwirkung auf den Bodenkohlenstoffhaushalt mit einem einhergehenden erhöhten CO2 Fluss der Böden in die Atmosphäre. Weiterhin wirken sich Änderungen im Bodenkohlenstoffhaushalt auf die Bodenfruchtbarkeit und Bodenqualität aus, wobei eine Minderung der Bodenkohlenstoffvorräte wichtige Funtionen des Bodens beeinträchtigt und folglich den Boden als wichtige Ressource nachhaltig beinflusst. Demzufolge ist die Quantifizierung der Bodenkohlenstoffdynamik unter heutigen und zukünftigen Bedingungen von hohem Interesse und erfordert eine integrierte Betrachtung der wesentlichen Faktoren und Prozesse. Zur Quantifizierung wurde ein ökohydrologisches Flusseinzugsgebietsmodell erweitert. Ziel des erweiterten Modells ist es fundierte Informationen zu Veränderungen des Bodenkohlenstoffhaushaltes, neben Veränderungen der Wasserqualität, der Wasserverfügbarkeit und des Vegetationswachstums unter Globalem Wandel in meso- bis makroskaligen Flusseinzugsgebieten bereitzustellen. Dies wird am Beispiel eines zentraleuropäischen Flusseinzugsgebietes (der Elbe) demonstriert. Zusammenfassend ergibt diese Arbeit: ▪ eine Quantifizierung der heutigen und zukünftigen Auswirkungen des Klimawandels sowie von Änderungen der Landnutzung (Bodenbedeckung und Bodenbearbeitung) auf den Bodenkohlenstoffhaushalt agrarisch genutzter Räume im Einzugsgebiet der Elbe. ▪ eine Beurteilung welche Prozesse, und zu welchem Prozessdetail, zur integrierten Simulation der Bodenkohlenstoffdynamik in der meso- bis makroskala zu berücksichtigen sind. Weiterhin wird die Eignung der Modellerweiterung zur Simulation dieser Prozesse unter der Zuhilfenahme von Messwerten dargelegt. ▪ darauf begründet wird eine Prozessbeschreibung vorgeschlagen die die Eigenschaften der Bodenkohlenstoffspeicher und deren Umsetzungsrate mit in der betrachteten Skala zur Verfügung stehenden Messdaten und Geoinformationen verbindet. Die vorgeschlagene Prozessbeschreibung kann als robust hinsichtlich der Parametrisierung angesehen werden, da sie mit vergleichsweise wenigen Modelparametern eine ähnliche Güte wie andere Bodenkohlenstoffmodelle ergibt. ▪ eine umfassende Betrachtung der Modell- und Eingangsdatenunsicherheiten von Modellergebnissen in ihrer räumlichen und zeitlichen Ausprägung. Das in dieser Arbeit vorgestellte Modellsystem erlaubt eine Quantifizierung der Auswirkungen des Klima- und Landnutzungswandels auf den Bodenkohlenstoffhaushalt. Neu dabei ist, dass neben Auswirkungen auf den Bodenkohlenstoffhaushalt auch Auswirkungen auf Wasserverfügbarkeit, Wasserqualität, Vegetationswachstum und landwirtschaftlicher Produktivität erfasst werden können. Die im Rahmen dieser Arbeit dargelegten Ergebnisse erlauben eine integrierte Betrachtung der Auswirkungen des Globalen Wandels auf wichtige Ökosystemfunktionen in meso- bis makro-skaligen Flusseinzugsgebieten. Weiterhin können hier gewonnene Informationen zur Potentialabschätzung der Böden zur Linderung des Klimawandels (durch C Festlegung) und zum Erhalt ihrer Fruchtbarkeit genutzt werden.
3

Using stable isotopes for multi-scale assessment of ecohydrology in drought-affected urban water systems

Kuhlemann, Lena-Marie 15 February 2022 (has links)
In vielen Städten erfordern fortschreitende Urbanisierung und Klimaerwärmung ein besseres Verständnis des urbanen Wasserkreislaufes zur Entwicklung nachhaltiger Wassernutzungskonzepte. Jedoch erschwert die Komplexität urbaner Wasserflüsse die Nutzung hydrologischer Tracer. In dieser Arbeit werden stabile Isotope des Wassers, hydrochemische und -klimatische Daten genutzt, um die Wasserverteilung und -speicherung in Berlin in den Trockenjahren 2018–2020 zu untersuchen. Auf kleinräumiger Skala wurden Unterschiede bei Evapotranspiration, unterirdischen Fließwegen und Wasserspeicherung unter urbanen Grasflächen, Sträuchern und Bäumen deutlich. Im peri-urbanen Fluss Erpe erschwerte die geringe Variabilität von Abfluss- und Isotopendynamiken die Bestimmung von Verweilzeiten und Mischprozessen. Während warmer, trockener Sommer führte ein hoher Klarwasseranteil zu einer Verschlechterung der Wasserqualität. Auf der stadtweiten Skala wurde der Einfluss von Grundwasser, Niederschlag und Abwasser auf verschiedene Flüsse untersucht. Große Variabilität der Isotopendynamiken wurde in Einzugsgebieten mit Flächenversiegelung und Regenwassereinleitung beobachtet. Die Anreicherung schwerer Isotope in Spree und Havel im Sommer und Herbst verdeutlichte den Einfluss von großskaligen Klimadynamiken und Verdunstung im stromaufwärts gelegenen Einzugsgebiet. Ein nachhaltiges Management urbaner Grünflächen sowie die Speicherung von Regenwasser können dazu beitragen, den Einfluss von Klimaänderungen auf Berlins Wasserressourcen auf lokaler Ebene abzumindern. Jedoch werden großskalige Nutzungskonzepte in den Einzugsgebieten der Spree und Havel benötigt, um Wasserverluste zu minimieren und Abflussraten aufrecht zu erhalten. Weiterführende isotopenbasierte Studien haben großes Potential, das Verständnis von Wasseralter, Abflussentstehung, Verdunstung und langfristigen Dürrefolgen, sowie der Übertragbarkeit der Erkenntnisse auf andere Metropolenregionen, weiter zu verbessern. / In urban areas, progressing urbanisation and climate warming call for a comprehensive understanding of urban water cycling to establish sustainable water management strategies. However, the complexity of urban water fluxes complicates the application of hydrological tracers. This thesis used stable isotopes of water, combined with hydrochemical and climatic data, to characterise water partitioning and storage in Berlin, Germany, during the exceptionally warm and dry 2018–2020 period. At the plot-scale, differences in evapotranspiration, subsurface flow paths and storage under urban grassland, shrub and trees were evident. In the peri-urban river Erpe, low variability in discharge and isotopic dynamics limited the applicability of transit time and end member mixing approaches. During warm and dry summers, high contributions of treated wastewater effluents caused a deterioration of water quality. At the city-scale, contributions of groundwater, storm runoff and effluents to different local streams were studied. Isotope dynamics were most variable in catchments with high levels of imperviousness and connectivity to storm drains. In the Spree and Havel rivers, the isotopic enrichment in summer and autumn reflected the impact of large-scale climate dynamics and evaporative losses in the upstream catchment. To mitigate climate change impacts on Berlin’s water resources in the future, the sustainable management of urban green spaces and better capturing of urban rainfall may limit water consumption at the local scale. However, maintaining discharge in the Spree and Havel rivers during warm and dry periods will require catchment-scale management practices that limit water consumption and losses in upstream areas. Future isotope-based research in urban areas has great potential to improve the understanding of urban water ages, source contributions to urban streamflow, evaporation and long-term drought recovery, as well as upscaling the results to other metropolitan areas.

Page generated in 0.0491 seconds