Spelling suggestions: "subject:"échanges gazeuse""
1 |
Impact sur le travail respiratoire et les échanges gazeux pour l'utilisateur d'un masque à gazBourassa, Stéphane 24 April 2018 (has links)
Nous avons conduit un programme de recherche portant sur l’impact du port d’un masque à gaz sur l’effort respiratoire et les échanges gazeux chez des sujets sains au repos et à l’effort et chez des patients MPOC au repos. Ces données ont été acquises en mesurant les débits respiratoires et la pression œsophagienne. Une étude sur banc a évalué les composantes résistives du masque à gaz C4 (Airboss Defense) et de 8 différents cartouches filtrantes. Chez les sujets sains, tous les indices d’effort respiratoires ont été significativement augmentés (WOB; PTP; Swing Pes) au repos et à l’effort. Quant aux patients, les augmentations des indices respiratoires ont été modérées au repos. La cartouche filtrante semble expliquer en partie ces effets et nous avons constaté que les résistances de cet élément du masque varient en fonction des modèles. Nos conclusions se destinent à optimiser de nouveaux masques pour limiter le «stress respiratoire» de ces dispositifs. / We conducted a research program on the impact of wearing a gas mask on respiratory effort and gas exchanges in healthy subjects at rest and during exercise and in COPD patients at rest. These data were acquired by measuring respiratory flow and esophageal pressure. A bench study evaluated the resistive components of the C4 gas mask (Airboss Defense) and of 8 different canisters. In healthy subjects, all indexes of respiratory effort (WOB; PTP; Swing Pes) were increased with mask at rest and during exercise. In COPD patients, the increases in respiratory index of effort were moderate. The canister of the mask seems to explain part of these effects and we found that resistances of this element of the mask vary according to the tested models. Our conclusions aimed at optimizing new masks to limit the «respiratory stress» of these devices.
|
2 |
Dynamique du transport et du transfert de l'oxygène au sein de l'acinus pulmonaireFoucquier, Aurélie 01 December 2010 (has links) (PDF)
L'acinus pulmonaire constitue l'unité d'échange gazeux entre l'air et le sang dans les voies aériennes pulmonaires. Dans le cadre de cette thèse, nous nous sommes plus particulièrement intéressés à l'oxygène. Plusieurs mécanismes sont mis en jeu depuis son entrée dans l'acinus jusqu'à sa capture par l'hémoglobine : les mécanismes de transport de l'oxygène dans l'air : convection et diffusion, le transfert par diffusion passive de l'oxygène à travers la membrane alvéolo-capillaire et sa capture par l'hémoglobine. Par la détermination de la capacité diffusive pulmonaire DL, il est possible d'évaluer cliniquement le fonctionnement et l'efficacité de ces mécanismes. Cette mesure est couramment employée pour le diagnostic, notamment pour mettre en évidence les détériorations de la membrane alvéolo-capillaire ou encore les pertes de surface d'échange. Expérimentalement, la DL s'exprime à partir des deux mesures cliniques suivantes: la pression alvéolaire PA et la consommation de gaz V. Plus particulièrement, dans le cas qui nous intéresse ici soit celui de l'oxygène, il s'agit de la pression partielle en oxygène contenue dans les alvéoles pulmonaires PA,O2 et de la quantité d'oxygène échangée en une minute VO2. Il est possible de déterminer une valeur théorique de la capacité diffusive pulmonaire grâce à une formulation classique et empirique très utilisée en médecine. Celle-ci est aujourd'hui encore le sujet de nombreuses publications car elle ne reproduit pas exactement les résultats de l'expérience. Nous avons mis en place un modèle numérique dynamique du transport et du transfert de l'oxygène au sein de l'acinus pulmonaire permettant de restituer les valeurs de PA,O2 et VO2 chez les sujets sains. Ce modèle dépend d'un unique paramètre physique ajustable qu'on appelle la perméabilité $W$. Celle-ci traduit toute la complexité du transfert de l'oxygène vers le sang. Elle se définit comme une conductance équivalente imposée par les trois mécanismes acteurs du transfert vers le sang. Par cette approche numérique, nous avons donc construit un acinus artificiel qui, à partir de la seule détermination de la perméabilité $W$ est capable de reproduire le fonctionnement de l'acinus réel. A partir de ce modèle, nous avons pu étudier l'influence de la géométrie asymétrique de l'acinus pulmonaire sur le transport et l'échange. Cette étude a mis en évidence une forte hétérogénéité de la répartition du flux d'oxygène échangé vers le sang dans l'acinus pulmonaire. Ceci peut s'expliquer grâce à un phénomène physique appelé masquage diffusionnel, responsable du fait que la pression partielle en oxygène dans l'acinus diminue. Ce phénomène est gouverné, notamment, par l'absorption à travers la membrane alvéolaire et la diffusion le long de la structure irrégulière de l'acinus. Cet effet entraîne que les parties profondes de l'acinus sont très peu alimentées en oxygène, la majorité ayant été absorbée dans les premières générations. Au repos, l'influence du masquage est élevée et le flux d'oxygène ne dépend que très peu du volume (proportionnel à la surface alvéolaire). A l'effort, l'effet du masquage est moindre, notamment grâce à la vitesse de convection plus élevée. Ainsi, la quasi-totalité de la surface alvéolaire est utilisée.
|
3 |
Réponses du peuplier soumis à une combinaison de contraintes, ozone et sécheresse : dynamique de la conductance stomatique et des capacités antioxydantes foliaires / Responses of poplar submitted to combined stresses, ozone and drought : dynamics of stomatal conductance and foliar antioxidant capacitiesDusart, Nicolas 23 July 2019 (has links)
Les modèles climatiques indiquent qu’il est très probable que les végétaux soient de plus en plus exposés à deux facteurs de stress environnementaux : l’ozone troposphérique (O3) et le déficit hydrique du sol, tous deux pouvant provoquer un stress oxydant pour le végétal. Dans des conditions naturelles, ces deux facteurs peuvent être concomitants ou se succéder. L’impact de l’O3 et de la sécheresse nécessite donc une attention particulière. Afin de déterminer les réponses de défense mises en place par les arbres, deux génotypes de Populus nigra x deltoides (Carpaccio et Robusta) ont été exposés aux contraintes séparées ou à leur combinaison en conditions contrôlées dans des chambres de culture. Pour explorer les effets des stress et l’interaction entre les deux contraintes, nous avons ciblé les deux premiers niveaux de défense des plantes que sont le contrôle de l’ouverture/fermeture des stomates et les processus de détoxication cellulaire. Nos résultats montrent que Carpaccio et Robusta sont tous deux relativement tolérants à une sécheresse modérée grâce à un contrôle efficient des stomates. Face à l’O3, cependant, les deux génotypes adoptent des stratégies de réponse différentes : un évitement important pour Carpaccio et une maximisation de l’assimilation au détriment des feuilles pour Robusta. Cela se traduit par une différence de fermeture des stomates. Les deux génotypes ne font alors pas face au même flux d’O3 entrant dans les feuilles, ce qui impacte la détoxication cellulaire, dans laquelle le glutathion semble jouer un rôle majeur. En lien avec les modifications de capacité antioxydante, l’activité des enzymes du cycle ascorbate-glutathion (MDHAR, DHAR et GR) et/ou l’expression des gènes codant pour ces protéines sont modifiées. En combinaison de stress, le déficit hydrique protège le végétal du stress oxydant induit par l’O3 en amplifiant la fermeture des stomates. En revanche, la croissance de l’arbre est impactée par l’effet additif des deux contraintes. De plus, l’induction de voies de régulation hormonales différentes par les deux contraintes pourrait modifier le « cross-talk » complexe régulant la réponse au stress combiné. Enfin, dans le cas d’une succession de stress, l’exposition à l’O3 avant un épisode de sécheresse impacte faiblement la réponse de l’arbre. Cependant, un ralentissement de la fermeture des stomates induit par l’O3 est observé malgré l’arrêt de la fumigation. Il est donc nécessaire de prendre en compte le ralentissement et la fermeture des stomates induit par l’O3 et le déficit hydrique dans les modèles de conductance stomatique utilisés pour calculer l’indicateur du flux d’O3 entrant, le PODy (Phytotoxic Ozone Dose above a threshold of y nmol O3 m-2.s-1). / Climate models indicate that it is very likely that plants will be more and more exposed to two environmental stressors: ground-level ozone (O3) and soil water deficit, both causing oxidative stress to the plant. Under natural conditions, these two factors can be concomitant or successive. Therefore, the impact of O3 and drought requires special attention. In order to determine the defensive responses adopted by trees, two genotypes of Populus nigra x deltoides (Carpaccio and Robusta) were exposed to separate or combined stresses under controlled conditions in growing chambers. To explore the effects of stresses and their interaction, we targeted the plant’s first two levels of defence: i) the control of stomatal opening and closing, ii) the cellular detoxification processes. Our results show that both Carpaccio and Robusta are relatively tolerant to moderate drought thanks to an efficient stomatal control. However, different response strategies were adopted by the two genotypes to cope with O3. For Carpaccio, the strategy is avoidance, and for Robusta, the strategy is maximization of net CO2 assimilation at the expense of leaves. This results in a difference in the stomatal closure. The two genotypes do not face the same flow of O3 entering the leaves. This impacts cellular detoxification in which glutathione seems to play a major role. Also, the activity of ascorbate-glutathione cycle enzymes (MDHAR, DHAR and GR) and/or the expression of genes encoding these proteins are modified. Under combined stresses, the water deficit protects the plant from the O3-induced oxidative stress by amplifying the stomatal closure. Nevertheless, the tree growth is impacted by the additive effect of the two stresses. Furthermore, the induction of different hormonal regulatory pathways by the two stressors could modify the complex "cross-talk" regulating the response to combined stress. Finally, in the case of a succession of stresses, exposure to O3 prior to a drought episode has a weak impact on the tree's response. However, O3 induced a stomatal sluggishness in closure despite the cessation of fumigation. It is therefore necessary to take into account stomatal closure and sluggishness induced by O3 and water deficit in the stomatal conductance models used to calculate the indicator of O3 flux inside the leaves, PODy (Phytotoxic Ozone Dose above a threshold of y nmol O3 m-2.s-1).
|
4 |
Etude des interactions entre la plante Arabidopsis thaliana (L.) Heynh et le ver de terre Aporrectodea caliginosa (Savigny) : application à la phytoremédiation de l'arsenic et de l'antimoineJana, Ulrike 14 December 2009 (has links) (PDF)
L'arsenic et l'antimoine bien que n'étant pas recensés parmi les polluants majeurs de l'environnement sont souvent retrouvés associés à d'autres contaminants. En France, et plus particulièrement dans la région Auvergne, de nombreux sites miniers où s'effectuait l'extraction de l'antimoine sont désormais à l'abandon. Pouvant présenter des risques pour les populations avoisinantes, leur réhabilitation est donc une mission d'intérêt public. L'idée de ce travail de doctorat est de tester l'effet d'un catalyseur : le ver de terre sur l'efficacité des processus de phytoremédiation. En tant qu'" ingénieurs du sol ", ils sont à la base des processus de pédogénèse et peuvent donc assurer la restructuration du sol. De plus, de nombreuses études ont montré leurs effets positifs sur la production de biomasse végétale. Cependant, les mécanismes moléculaires responsables de cette acroissement de production demeurent méconnus. Un système expérimental novateur, jamais utilisé en Ecologie des Sols et couplant la plante modèle Arabidopsis thaliana (L.) Heynh et Aporrectodea caliginosa (Savigny), un ver de terre endogé commun des régions tempérées, a été mis en place afin de 1) identifier les principales voies métaboliques modifiées en réponse aux vers de terre et pouvant expliquer leurs effets positifs sur la croissance et le développement des végétaux, 2) étudier la nutrition minérale en fer et en phosphate, notamment au niveau des variations d'expression des transporteurs de ces deux éléments, 3) tester ce système pour la phytoextraction de sédiments, issus d'un ancien site minier, contaminés à l'arsenic et à l'antimoine. Les résultats montrent que l'amélioration des processus de minéralisation est déterminante dans l'accroissement de la biomasse d'Arabidopsis thaliana qui se traduit aussi par une élévation des teneurs en azote dans les parties aériennes. Cependant, la présence de phytohormones, produites par des bactéries activées par leur transit dans le ver de terre semble également impliquée dans le renforcement de l'absorption d'azote. A l'échelle moléculaire, les vers entraînent une surexpression du gène HBT, impliqué dans la division cellulaire et semblent diminuer le stress oxydant puisque la quantité de transcrits SOD Cu/Zn diminue. Les résultats montrent de plus que les vers de terre augmentent de façon significative l'absorption et l'accumulation de fer, de phosphate et d'autres minéraux essentiels à la croissance du végétal. Moléculairement, l'augmentation de l'absorption des nutriments se traduit par une augmentation de la transcription de certains gènes codant des transporteurs tels que PHT1.3, qui est un transporteur de haute affinité pour le phosphate. Une augmentation de la transcription et également de l'activité de la protéine FRO2, qui est à l'origine de la chélation et de la réduction du fer a été observée. Dans les feuilles, les vers de terre induisent de manière systémique la surexpression d'un transporteur de phosphate localisé dans les chloroplastes, PHT2.1 et la surexpression de transporteurs du fer appartenant à la famille des NRAMPs, notamment NRAMP1,2 et 6. Dans le contexte d'une problématique de phytoremédiation, l'effet des vers de terre sur la capacité de phytoextraction d'Arabidopsis a été testé et, il ressort clairement de cette étude que les vers de terre permettent une meilleure absorption d'antimoine et d'arsenic. Cependant, ces deux métalloïdes tendent à rester dans les racines et ne sont que faiblement transferrés vers les parties aériennes. Cette formidable augmentation des concentrations en polluants dans les racines entraîne un retard de croissance considérable et affecte, dans une moindre mesure cependant, l'activité photosynthétique et les échanges gazeux d'Arabidopsis. Ainsi, ce travail de thèse a donc tout d'abord démontré la sensibilité aux vers de terre de la plante modèle Arabidopsis thaliana. Ce système expérimental novateur offre de nouvelles possibilités de recherches dans le domaine des études des interactions entre les vers de terre et les plantes, notamment en raison de la grande diversité de mutants d'Arabidopsis. De plus, ce travail a également permis de démontrer le rôle crucial de catalyseur que peuvent jouer les vers de terre en vue d'optimisation des processus de phytoextraction
|
5 |
Impacts du changement climatique sur les bilans de carbone et de gaz à effet de serre de la prairie permanente en lien avec la diversité fonctionnelle / Impacts of climate change drivers on grassland structure, production and greenhouse gas fluxesCantarel, Amélie 25 March 2011 (has links)
En Europe, la prairie occupe près de 40% de la surface agricole utile et fournit un ensemble de services environnementaux et agricoles, tout en constituant un réservoir de diversité végétale et animale. Cet écosystème herbacé, plurispécifique et multifonctionnel est un système biologique complexe qui fait interagir l’atmosphère, la végétation et le sol, via les cycles biogéochimiques, notamment ceux du carbone et de l’azote. Motivées par le maintien des biens et services des prairies face aux changements climatiques et atmosphériques, les recherches actuelles sur l’écosystème prairial s’attachent à étudier l’évolution des processus clés du système prairial (i .e. production, échanges gazeux, changements d’espèce) sous changement climatique complexe. Ce projet de thèse a pour objectif d’étudier in situ les impacts des principales composantes du changement climatique (température de l’air, précipitations, concentration atmosphérique en gaz carbonique) sur des prairies extensives de moyenne montagne. Nous cherchons à mettre en évidence les changements de structure et de fonctionnement de l’écosystème prairial sous l’influence d’un scénario de changement climatique prévu à l’horizon 2080 pour le centre de la France. Ce scénario (ACCACIA A2) prévoit une augmentation de 3.5°C des températures de l’air, une augmentation des concentrations atmosphériques en CO2 de 200 ppm et une réduction des précipitations estivales de 20 %. Nos résultats indiquent qu’à moyen terme (trois ans de traitements expérimentaux) le réchauffement a des effets néfastes sur la production annuelle du couvert végétal. L’effet bénéfique d’une élévation des teneurs en CO2 sur la production aérienne n’apparaît qu’à partir de la troisième année. La richesse spécifique (nombre d’espèces) et les indices de diversité taxonomique n’ont pas montré de variations significatives sous changement climatique. Cependant après trois années de réchauffement, l’abondance des graminées semble être altérée. Contrairement à la production, les traits sont plus affectés par la concentration en CO2 élevée que par le réchauffement. Après trois ans de traitements, des mesures d’échanges gazeux (CO2) à l’échelle du couvert végétal pendant la saison de croissance ont montré un effet négatif du réchauffement sur l’activité photosynthétique du couvert et une acclimatation de la photosynthèse au cours de la saison de croissance sous CO2 élevé. Ces tendances ont aussi été trouvées sur la photosynthèse foliaire d’une des espèces dominantes du couvert (Festuca arundinacea). L’effet négatif direct du réchauffement à l’échelle foliaire semble être associé à une diminution des sucres dans les limbes. L’acclimatation à l’enrichissement enCO2 à l’échelle foliaire, quant à elle, semble être indirectement dépendante du statu hydrique du sol. Notre étude a aussi porté sur l’analyse des échanges gazeux sol-atmosphère d’un des principaux gaz à effet de serre trace des prairies, l’oxyde nitreux (N2O). Malgré une forte variabilité inter- et intra- annuelle, les flux de N2O semblent être favorisés sous réchauffement. L’augmentation de la température affecte aussi positivement les taux de nitrification et leur pool microbien associé (AOB), et les rejets de N2O via dénitrification. De plus, les flux de N2O mesurés aux champs ont montré une corrélation plus forte à la taille des populations microbiennes (nitrifiantes et dénitrifiantes) en traitement réchauffé qu’en traitement témoin. En conclusion, la température semble être le facteur principal dans les réponses de cette prairie aux changements climatiques futurs. De plus, nos résultats suggèrent que le fonctionnement (production, émissions de N2O) des prairies extensives de moyenne montagne est plus vulnérable aux changements climatiques que la structure de la communauté végétale. / In France, the grassland ecosystem represents an important part of the total of agricultural landscape and provides important economic and ecological services. This multifunctional ecosystem is a complex biological system where atmosphere, plants and soil interact together,via the biogeochemical cycles (particularly carbon and nitrogen cycles). In order to maintain goods and services from grasslands in changing environmental conditions, current research on the grassland ecosystem focus on the evolution of key grassland processes (i.e. production,gaseous exchanges, biodiversity) under multiple and simultaneous climate change.This thesis addresses the impacts of the three main climate change drivers (air temperature, precipitation and atmospheric carbon dioxide concentrations) on an extensively-managed upland grassland in situ. We investigated changes in ecosystem function and structure under the influence of a projected climate scenario for 2080 for central France. This scenario (ACCACIA A2) comprises : air warming of 3.5°C, 20 % reduction of the summer precipitation and an increase of 200 ppm in atmospheric carbon dioxide (CO2).Our results indicate that in the medium term (after three years of experimental treatments), warming had negative effects on the annual aboveground production. Elevated CO2 had no significant effects on aboveground production initially, but positive effects on biomass from the third year onwards. Species richness and the indices of species diversity did not show significant differences in response to climate change, but warming was associated with a decline in grass abundance after three years. Contrary to biomass production, plant traits showed a stronger response to elevated CO2 than to warming. After three years of study, canopy-level photosynthesis showed a negative effect of warming but an acclimation to elevated CO2 during the growing season. This pattern was also found for leaf-level photosynthetic rates measured on a dominant grass species (Festuca arundinacea). For Festuca, the direct negative effect of warming was associated with a decrease in leaf fructan metabolism. In contrast, the photosynthetic acclimation under elevated CO2 observed in Festuca seemed closely linked to the indirect effect of soil water content. Our study also examined effects of climate change on one of the main trace greenhouse gases in grasslands, nitrous oxide (N2O). During our study, N2O fluxes showed significant inter-and intra-annual variability. Nevertheless, mean annual N2O fluxes increased in response to warming. Warming had a positive effect on nitrification rates, denitrification rates and the population size of nitrifying bacteria (AOB). Furthermore, field N2O fluxes showed a stronger correlation with the microbial population size in the warmed compared with the control treatment. Overall, warming seems to be the main factor driving ecosystem responses to projected climate change conditions for this cool, upland grassland. In addition, our results suggest that grassland function (aboveground production, N2O emissions) are more vulnerable to complex climate change than grassland community structure for our study system.
|
6 |
Diffusion du CO2 dans le mésophylle des plantes à métabolisme C3PIEL, Clément 15 November 2002 (has links) (PDF)
L'activité photosynthétique foliaire est fonction de la disponibilité en CO2 au niveau de la Rubisco dans le chloroplaste. La disponibilité en CO2 est déterminée par une série de limitations au transfert du CO2 entre l'air ambiant et les sites enzymatiques de la Rubisco, qui sont à l'origine d'un gradient de concentration. La limitation à la diffusion du CO2 dans le mésophylle, d'abord dans le réseau des espaces gazeux intercellulaires puis dans la cellule, contribue de manière très significative à ce gradient. Cette limitation est quantifiée sous la forme d'une conductance au transfert du CO2 : la conductance interne (gi). Ce travail de thèse a été consacré à l'étude de la diffusion du CO2 dans le mésophylle des plantes ayant un métabolisme photosynthétique de type C3. Nous avons tout d'abord amélioré l'estimation de gi grâce une méthode d'analyse simultanée des échanges gazeux et de la fluorescence chlorophyllienne. Nous avons ensuite analysé les deux composantes déterminant gi : la limitation dans les espaces gazeux intercellulaires du mésophylle, et la limitation en phase liquide cellulaire. Nous montrons, grâce à une approche originale d'estimation de gi dans une atmosphère à base d'hélium, chez le peuplier, le rosier, le chêne vert et le laurier rose, que la totalité de gi est déterminée par la limitation en phase liquide cellulaire. Enfin, nous avons étudié la variabilité interspécifique et phénotypique de gi. Nous confirmons l'existence d'une corrélation entre gi et l'assimilation maximale pour les différentes espèces étudiées (espèces citées ci-dessus, et chez le noyer et le lamier), et nous montrons que la présumée distinction entre ligneux présentant une faible gi et herbacées présentant une forte gi n'est pas pertinente. Nous montrons également que chez le noyer, une réponse de gi accompagne l'acclimatation foliaire à l'environnement lumineux, et proposons une paramétrisation de gi pour modéliser la photosynthèse.
|
7 |
Impacts du changement climatique sur les bilans de carbone et de gaz à effet de serre de la prairie permanente en lien avec la diversité fonctionnelleCantarel, Amélie 25 March 2011 (has links) (PDF)
En Europe, la prairie occupe près de 40% de la surface agricole utile et fournit un ensemble de services environnementaux et agricoles, tout en constituant un réservoir de diversité végétale et animale. Cet écosystème herbacé, plurispécifique et multifonctionnel est un système biologique complexe qui fait interagir l'atmosphère, la végétation et le sol, via les cycles biogéochimiques, notamment ceux du carbone et de l'azote. Motivées par le maintien des biens et services des prairies face aux changements climatiques et atmosphériques, les recherches actuelles sur l'écosystème prairial s'attachent à étudier l'évolution des processus clés du système prairial (i .e. production, échanges gazeux, changements d'espèce) sous changement climatique complexe. Ce projet de thèse a pour objectif d'étudier in situ les impacts des principales composantes du changement climatique (température de l'air, précipitations, concentration atmosphérique en gaz carbonique) sur des prairies extensives de moyenne montagne. Nous cherchons à mettre en évidence les changements de structure et de fonctionnement de l'écosystème prairial sous l'influence d'un scénario de changement climatique prévu à l'horizon 2080 pour le centre de la France. Ce scénario (ACCACIA A2) prévoit une augmentation de 3.5°C des températures de l'air, une augmentation des concentrations atmosphériques en CO2 de 200 ppm et une réduction des précipitations estivales de 20 %. Nos résultats indiquent qu'à moyen terme (trois ans de traitements expérimentaux) le réchauffement a des effets néfastes sur la production annuelle du couvert végétal. L'effet bénéfique d'une élévation des teneurs en CO2 sur la production aérienne n'apparaît qu'à partir de la troisième année. La richesse spécifique (nombre d'espèces) et les indices de diversité taxonomique n'ont pas montré de variations significatives sous changement climatique. Cependant après trois années de réchauffement, l'abondance des graminées semble être altérée. Contrairement à la production, les traits sont plus affectés par la concentration en CO2 élevée que par le réchauffement. Après trois ans de traitements, des mesures d'échanges gazeux (CO2) à l'échelle du couvert végétal pendant la saison de croissance ont montré un effet négatif du réchauffement sur l'activité photosynthétique du couvert et une acclimatation de la photosynthèse au cours de la saison de croissance sous CO2 élevé. Ces tendances ont aussi été trouvées sur la photosynthèse foliaire d'une des espèces dominantes du couvert (Festuca arundinacea). L'effet négatif direct du réchauffement à l'échelle foliaire semble être associé à une diminution des sucres dans les limbes. L'acclimatation à l'enrichissement enCO2 à l'échelle foliaire, quant à elle, semble être indirectement dépendante du statu hydrique du sol. Notre étude a aussi porté sur l'analyse des échanges gazeux sol-atmosphère d'un des principaux gaz à effet de serre trace des prairies, l'oxyde nitreux (N2O). Malgré une forte variabilité inter- et intra- annuelle, les flux de N2O semblent être favorisés sous réchauffement. L'augmentation de la température affecte aussi positivement les taux de nitrification et leur pool microbien associé (AOB), et les rejets de N2O via dénitrification. De plus, les flux de N2O mesurés aux champs ont montré une corrélation plus forte à la taille des populations microbiennes (nitrifiantes et dénitrifiantes) en traitement réchauffé qu'en traitement témoin. En conclusion, la température semble être le facteur principal dans les réponses de cette prairie aux changements climatiques futurs. De plus, nos résultats suggèrent que le fonctionnement (production, émissions de N2O) des prairies extensives de moyenne montagne est plus vulnérable aux changements climatiques que la structure de la communauté végétale.
|
8 |
Analyse des échanges eau-atmosphère et du bilan d'énergie d'un réservoir hydroélectrique en milieu boréalPierre, Adrien 18 January 2024 (has links)
Les réservoirs constituent des ouvrages de retenue d'eau qui permettent de supporter une vaste gamme d'activités humaines telles que la production d'électricité et d'eau potable, l'irrigation, la navigation, etc. L'Est de la région boréale canadienne compte une part importante de réservoirs hydroélectriques. Le contexte actuel des changements climatiques affecte fortement ces écosystèmes et modifie ainsi l'hydrologie et la climatologie régionale via les échanges d'eau, d'énergie et de gaz à effet de serre (dioxyde de carbone, méthane, vapeur d'eau) avec l'atmosphère. Parmi ces échanges, l'évaporation, une composante essentielle des modèles climatique et hydrologique, demeure encore difficile à estimer à ce jour. Le bilan hydrique d'un réservoir reflète l'équilibre entre les flux massiques entrant et sortant, et permet d'anticiper l'évolution des volumes d'eau disponibles pour supporter les différents usages anthropiques. Il se compose des flux entrant et sortant, de la précipitation, de l'évaporation, qui mis ensemble peuvent faire varier le volume d'eau stocké. Via l'évaporation, le bilan d'énergie d'un réservoir est couplé au bilan hydrique, ce qui en motive son étude. Le bilan d'énergie d'un réservoir compare les flux de chaleurs advectifs, turbulents (sensible et latent) et de rayonnement net. Même si beaucoup d'études ont analysé et quantifié le bilan énergétique des plans d'eau, des lacunes demeurent. En effet, peu d'entre elles ont été effectuées sur des réservoirs hydroélectriques, de surcroît en zone boréale. De plus, lorsque disponibles, les observations ont généralement des portées spatiale et temporelle limitées. L'objectif principal de cette thèse est de pallier ces insuffisances en réalisant une analyse des échanges eau-atmosphère d'un réservoir hydroélectrique profond à plusieurs échelles spatiales (locale ~ ha; régionale ~ km²) et temporelles (journalière, mensuelle et annuelle), puis en quantifiant les bilans de masse et d'énergie en incluant les échanges advectifs liés au turbinage du réservoir. Notre démarche expérimentale s'appuie sur une campagne de mesures réalisée sur le réservoir Romaine-2 (50.68°N, 63.25°O), exploité par Hydro-Québec depuis 2015, situé à 243 m d'altitude au Québec, Canada. Le réservoir présente des profondeurs moyenne de 44 m et maximale de 101 m, une superficie maximale de 85.6 km² avec un marnage annuel maximal de 17 m. Deux tours à flux mesurant le bilan d'énergie thermique ont été déployées de juin 2018 à juin 2022, l'une sur la berge et la seconde sur un quai flottant ancré au fond du réservoir et déployé en période d'eau libre chaque année. L'objectif principal de la thèse est décliné en trois objectifs spécifiques. Le premier objectif consiste à évaluer l'applicabilité sur un plan d'eau d'une méthode récente de mesure des flux turbulents à l'échelle régionale (~ km²), soit la scintillométrie à deux longueurs d'onde. Les résultats sont comparés avec ceux de la méthode de référence à l'échelle locale (~ ha), la covariance des tourbillons, réalisée à partir d'un quai flottant. La méthode de scintillométrie repose sur deux couples d'émetteurs/récepteurs installés de part et d'autre du réservoir Romaine-2 et émettant deux faisceaux situés pour l'un dans l'infrarouge et pour l'autre dans le domaine des micro-ondes, sur une distance de 1745 m et à une hauteur approximative de 10 m au-dessus de la surface du plan d'eau. Les résultats révèlent une concordance acceptable des flux de chaleur sensible, mais moins probante quant aux flux de chaleur latente qui sont surestimés par rapport à la méthode locale de covariance des tourbillons. L'empreinte de mesure plus large des scintillomètres peut expliquer ces différences en captant une plus grande hétérogénéité dans les flux. Enfin, la différence de température eau-air se révèle être un bon indicateur du régime de stabilité et par conséquent de la direction (i.e., signe) du flux de chaleur sensible, initialement mal attribué par la scintillométrie. Pour le deuxième objectif, les variabilités journalière, mensuelle et interannuelle de l'évaporation mesurée à l'échelle locale au-dessus du réservoir Romaine-2 sont quantifiées et analysées. Les résultats montrent un déphasage de 12 heures entre les flux de chaleurs sensible et latente pendant la période d'eau libre. Le flux de chaleur sensible répond avant tout à la différence de température eau-air qui est maximale la nuit et minimale l'après-midi, tandis que le flux de chaleur latente est corrélé à l'énergie apportée par le rayonnement solaire qui est maximale l'après-midi et minimale la nuit. Annuellement, l'évaporation atteint 590 mm en moyenne (minimum de 555 mm, et maximum de 656 mm), ce qui représente environ 51 % de la précipitation annuelle. 84% de l'eau est évaporée entre août et décembre, période pendant laquelle le réservoir largue intensément sa chaleur stockée dans une atmosphère plus froide. L'évaporation annuelle cumulée a dû être corrigée à la hausse par application de la fraction d'énergie perdue sur une année énergétique (aucun stockage net). Pour le troisième objectif, l'évolution temporelle du régime thermique du réservoir est caractérisée par des mesures de profil thermique de la colonne d'eau, à l'aide de deux chaînes de thermistors, et ce entre juin 2018 et juin 2022. Les données de turbinage offrent la possibilité de quantifier le bilan hydrique du réservoir ainsi que le bilan d'énergie complet associé. Les résultats montrent que les couches supérieures affichent des décalages d'amplitudes thermique et temporel avec les couches plus profondes. La variabilité interannuelle de la thermocline reste faible, mais sa profondeur et son gradient thermique varient en fonction du niveau d'eau et du turbinage. Le bilan hydrique est dominé en entrée et en sortie par les débits turbinés (61.4% du réservoir amont et 88.0% via la centrale en aval), tandis que le bilan d'énergie est principalement gouverné en entrée par le rayonnement net (62.3%) et en sortie dans les mêmes proportions par les flux de chaleurs sensible et latente (41.2%) et le débit sortant du réservoir (37.4%). Cette thèse offre donc une analyse méthodique et structurée de résultats obtenus sur une longue période de campagne en milieu éloigné, sur la base de méthodes de mesure peu usitées jusqu'alors dans une région climatique parfois hostile d'un réservoir hydroélectrique en milieu boréal côtier, la basse Côte Nord du Québec. / Reservoirs are water retention structures that support a wide range of human activities such as power generation, drinking water, irrigation, navigation, etc. The eastern part of the Canadian boreal region has a significant amount of hydroelectric reservoirs. The current context of climate change strongly affects these ecosystems and thus modifies regional hydrology and climatology through the exchange of water, energy and greenhouse gases (carbon dioxide, methane, water vapour) with the atmosphere. Among these exchanges, evaporation, an essential component of climate and hydrological models, remains difficult to estimate to this day. The water balance of a reservoir represents the balance between incoming and outgoing mass flows, and allows to anticipate the evolution of the volumes of water available to support the different anthropic uses. It is composed of lateral and upstream inflows and outlet flows (i.e. spillway and turbine), precipitation and evaporation, which together can vary the volume of water stored. Through evaporation, the energy balance of a reservoir is coupled to the water balance, which motivates its study. The energy balance of a reservoir compares advective, turbulent (sensible and latent) and net radiation heat fluxes. Although many studies have analysed and quantified the energy balance of water bodies, there are still gaps. Indeed, few of them have been carried out on hydroelectric reservoirs, especially in boreal zones. Moreover, when available, the observations generally have limited spatial and temporal scope. The main objective of this thesis is to overcome these shortcomings by analyzing the water-atmosphere exchanges of a deep hydroelectric reservoir at several spatial (local ~ ha; regional ~ km²) and temporal (daily, monthly and annual) scales, and then quantifying the mass and energy balances by including the advective exchanges related to the reservoir turbining. Our experimental approach is based on a measurement campaign carried out on the Romaine-2 reservoir (50.68°N, 63.25°W), operated by Hydro-Québec since 2015, located at 243 m altitude in Quebec, Canada. The reservoir has an average depth of 44 m and a maximum depth of 101 m, a maximum surface area of 85.6 km² with a maximum tidal range of 17 m. Two flux towers measuring the thermal energy balance were deployed from June 2018 to June 2022, one on the shore and the second on a floating raft anchored to the bottom of the reservoir and deployed during the open water period each year. The main objective of the thesis is broken down divided into three specific objectives. The first objective is to evaluate the applicability on a water body of a recent method for measuring turbulent flows on a regional scale (~ km²), i.e. two-wavelength scintillometry. The scintillometry method is based on two transmitter/receiver installed on either side of the Romaine-2 reservoir and emitting two beams, one in the infrared and the other in the microwave bands, over a distance of 1745 m and at a height of approximately 10 m above the water surface. The results show acceptable agreement for sensible heat fluxes, but less agreement for latent heat fluxes which are overestimated compared to the local eddy covariance method. The larger footprint of the scintillometers may explain these differences by capturing greater heterogeneity in the fluxes. Finally, the water-air temperature difference turns out to be a good indicator of the stability regime and therefore of the direction (i.e., sign) of the sensible heat flux, initially poorly assigned by scintillometry. For the second objective, the daily, monthly and interannual variabilities of evaporation measured at the local scale above the Romaine-2 reservoir are quantified and analysed. Results show a 12-hour phase shift between sensible and latent heat fluxes during the open water period. The sensible heat flux responds primarily to the water–air temperature difference which is maximum at night and minimum in the afternoon, while the latent heat flux is related to the energy provided by solar radiation which is maximum in the afternoon and minimum at night. Annually, evaporation averages 590 mm (minimum and maximum 555 mm and 656 mm respectively), which represents about 51% of the annual precipitation. 84% of the water is evaporated between August and December, when the reservoir intensively releases its stored heat into a colder atmosphere. The annual cumulative evaporation is then corrected upwards by considering the ratio of the energy budget over an energy year (no net storage). As a third objective, the temporal trends of the reservoir thermal regime is characterized by thermal profile measurements of the water column using two thermistors chains, between June 2018 and June 2022. The turbining data provides the opportunity to quantify the water budget of the reservoir and the associated full energy budget. Results show that there are temporal thermal amplitude lags between the surface and the deeper layers. The interannual variability of the thermocline remains small, but the depth and thermal gradient vary with water level and turbining. The water budget is dominated at the inlet and outlet by the turbined flows (61.4% from the upstream reservoir and 88.0% via the downstream power station), while the energy budget is mainly governed at the inlet by net radiation (62.3%) and at the outlet by both the sensible and latent heat fluxes (41.2%) and reservoir flow (37.4%). Ultimately, this thesis provides a methodical and structured analysis of results obtained over a long period of fieldwork in a remote environment. It is based on measurement technics that have not been widely used up to now in a hostile climatic region of a coastal boreal hydroelectric reservoir, the lower Côte Nord of Québec.
|
9 |
Molecular and physiological characterization of grapevine rootstock adaptation to drought / Caractérisation moléculaire et physiologique de l'adaptation à la sécheresse des porte-greffes de vignePeccoux, Anthony 19 December 2011 (has links)
Dans le contexte du changement climatique, les prédictions réalisées mettent en évidence une altération de la disponibilité en eau dans de nombreuses régions viticoles ; ce qui, conjointement à l’augmentation de la population mondiale et la diminution des terres agricoles, va accroître la compétition pour l’utilisation des ressources hydriques. Par conséquent, améliorer l'adaptation à la sécheresse de la vigne est un des enjeux majeurs des prochaines années. Pour cela, une adaptation des pratiques culturales peut être proposée, en particulier le choix pertinent du matériel végétal et notamment du porte-greffe.Dans ce travail, le rôle du porte-greffe vis-à-vis de la réponse de la vigne greffée à la contrainte hydrique a été étudié, en utilisant des approches écophysiologiques, moléculaires et de modélisation. Des expériences ont été réalisées en conditions contrôlées afin d’étudier l’effet du déficit hydrique à court et long terme sur les réponses de différents porte-greffes greffés avec le même scion.Le modèle écophysiologique a démontré que les porte-greffes affectent l'ouverture stomatique du greffon par des processus coordonnés incluant les caractéristiques racinaires, les signaux hydrauliques et les signaux chimiques lors d’un déficit hydrique à court terme. La conductance stomatique, le taux de transpiration et la conductance hydraulique des feuilles ont été plus élevés en conditions irriguées et de stress hydriques modérés chez le génotype résistant à la sécheresse (110 Richter) par rapport au génotype sensible à la sécheresse (Vitis riparia cv. Gloire de Montpellier). Nous avons identifié plusieurs paramètres génétiques impliqués dans le contrôle de la régulation stomatique. Des différences d’architecture racinaire et de conductivité hydraulique des racines ont été identifiées entre les porte-greffes.Le déficit hydrique à long terme a entrainé des réponses adaptatives différentes entre les porte-greffes. Le génotype tolérant la sécheresse a induit une modification du diamètre des vaisseaux du xylème de la partie apicale de la racine en réponse au déficit hydrique modéré tandis que le génotype sensible n'a pas présenté de différence par rapport au contrôle. L’analyse transcriptomique des racines a identifié des gènes spécifiques aux différents génotypes, qui sont régulés en fonction du niveau de déficit hydrique. La comparaison entre les niveaux de stress et les génotypes a identifié 24 gènes intervenant dans l’interaction « traitement × génotype ». Ces gènes sont majoritairement impliqués dans le métabolisme des lipides et de la paroi cellulaire. Des courbes de réponse au déficit hydrique spécifiques aux différents génotypes ont été observées. La protection contre les dommages liés aux stress oxydatifs induits par le stress hydrique semble être un mécanisme important chez le porte-greffe résistant à la sécheresse. Le génotype sensible semble répondre au déficit hydrique par une modification des propriétés de la paroi cellulaire de la racine. / Climate change raises concerns about temporal and spatial water availability in many grape growing countries. The rapidly increasing world population and the scarcity of suitable land for agricultural food production, together with a changing climate, will increase competition with grape-producing areas for the use of land and resources. Consequently, other practices that can potentially improve water management of vineyards and water acquisition by grapevines need to be considered. Aside from canopy systems and their management, the choice of plant material is a key issue. Therefore, in the present work, the role of different rootstocks, regarding their tolerance to drought, was investigated for their potential effects on i) water uptake, ii) water transport and iii) shoot water use, using a combination of ecophysiological, modelling and transcriptomic approaches. Experiments were conducted under controlled conditions to decipher short and long term responses to drought of different rootstocks grafted with the same scion. An ecophysiological model was used to investigate the roles of rootstock genotypes in the control of stomatal aperture. Long-term steady state water-deficit conditions were used to examine the responses of i) whole plant growth, root anatomy and hydraulic properties and ii) transcriptome remodelling in the roots.Our model showed that rootstock affect stomatal aperture of the grafted scion via coordinated processes between root traits, hydraulic signals and chemical signals. Stomatal conductance, transpiration rate and leaf-specific hydraulic conductance were higher and better maintained under well-watered and moderate water-deficit conditions in the drought-tolerant genotype (110 Richter) compared to the drought-sensitive one (Vitis riparia cv. Gloire de Montpellier). We identified several genotype-specific parameters which play important roles, like root-related parameters, in the control of stomatal regulation. Additionally, root system architecture and root hydraulic properties are important constitutive traits identified between rootstocks.Long-term water-deficit induced genotype adaptive responses in the roots were evaluated. The drought-tolerant genotype exhibited a substantial shift in root tips xylem conduit diameter under moderate water-deficit while the drought-sensitive genotype did not respond. Transcriptomic analysis identified genotype-specific transcripts that are regulated by water-deficit levels. The comparison between stress levels and genotypes identified 24 significant genes in “treatment×genotype” interactions, most of them were involved in lipid metabolism and cell wall processes. These genes displayed genotype-specific water-deficit response curves. Protection against drought-induced oxidative damage was found to be an important mechanisms induced by the drought-tolerant rootstock, while the drought-sensitive one responds to water-deficit by modification of cell wall properties.
|
10 |
Développement de modèles physiques pour comprendre la croissance des plantes en environnement de gravité réduite pour des apllications dans les systèmes support-vie / Developing physical models to understand the growth of plants in reduced gravity environments for applications in life-support systemsPoulet, Lucie 11 July 2018 (has links)
Les challenges posés par les missions d’exploration du système solaire sont très différents de ceux de la Station Spatiale Internationale, puisque les distances sont beaucoup plus importantes, limitant la possibilité de ravitaillements réguliers. Les systèmes support-vie basés sur des plantes supérieures et des micro-organismes, comme le projet de l’Agence Spatiale Européenne (ESA) MELiSSA (Micro Ecological Life Support System Alternative) permettront aux équipages d’être autonomes en termes de production de nourriture, revitalisation de l’air et de recyclage d’eau, tout en fermant les cycles de l’eau, de l’oxygène, de l’azote et du carbone, pendant les missions longue durée, et deviendront donc essentiels.La croissance et le développement des plantes et autres organismes biologiques sont fortement influencés par les conditions environnementales (par exemple la gravité, la pression, la température, l’humidité relative, les pressions partielles en O2 et CO2). Pour prédire la croissance des plantes dans ces conditions non-standard, il est crucial de développer des modèles de croissance mécanistiques, permettant une étude multi-échelle des différents phénomènes, ainsi que d’acquérir une compréhension approfondie de tous les processus impliqués dans le développement des plantes en environnement de gravité réduite et d’identifier les lacunes de connaissance.En particulier, les échanges gazeux à la surface de la feuille sont altérés en gravité réduite, ce qui pourrait diminuer la croissance des plantes dans l’espace. Ainsi, nous avons étudié les relations complexes entre convection forcée, niveau de gravité et production de biomasse et avons trouvé que l’inclusion de la gravité comme paramètre dans les modèles d’échanges gazeux des plantes nécessite une description précise des transferts de matière et d’énergie dans la couche limite. Nous avons ajouté un bilan d’énergie au bilan de masse du modèle de croissance de plante déjà existant et cela a ajouté des variations temporelles sur la température de surface des feuilles.Cette variable peut être mesurée à l’aide de caméras infra-rouges et nous avons réalisé une expérience en vol parabolique et cela nous a permis de valider des modèles de transferts gazeux locaux en 0g et 2g, sans ventilation.Enfin, le transport de sève, la croissance racinaire et la sénescence des feuilles doivent être étudiés en conditions de gravité réduite. Cela permettrait de lier notre modèle d’échanges gazeux à la morphologie des plantes et aux allocations de ressources dans une plante et ainsi arriver à un modèle mécanistique complet de la croissance des plantes en environnement de gravité réduite. / Challenges triggered by human space exploration of the solar system are different from those of the International Space Station because distances and time frames are of a different scale, preventing frequent resupplies. Bioregenerative life-support systems based on higher plants and microorganisms, such as the ESA Micro-Ecological Life Support System Alternative (MELiSSA) project will enable crews to be autonomous in food production, air revitalization, and water recycling, while closing cycles for water, oxygen, nitrogen, and carbon, during long-duration missions and will thus become necessary.The growth and development of higher plants and other biological organisms are strongly influenced by environmental conditions (e.g. gravity, pressure, temperature, relative humidity, partial pressure of O2 or CO2). To predict plant growth in these non-standard conditions, it is crucial to develop mechanistic models of plant growth, enabling multi-scale study of different phenomena, as well as gaining thorough understanding on all processes involved in plant development in low gravity environment and identifying knowledge gaps.Especially gas exchanges at the leaf surface are altered in reduced gravity, which could reduce plant growth in space. Thus, we studied the intricate relationships between forced convection, gravity levels and biomass production and found that the inclusion of gravity as a parameter in plant gas exchanges models requires accurate mass and heat transfer descriptions in the boundary layer. We introduced an energy coupling to the already existing mass balance model of plant growth and this introduced time-dependent variations of the leaf surface temperature.This variable can be measured using infra-red cameras and we implemented a parabolic flight experiment, which enabled us to validate local gas transfer models in 0g and 2g without ventilation.Finally, sap transport needs to be studied in reduced gravity environments, along with root absorption and leaf senescence. This would enable to link our gas exchanges model to plant morphology and resources allocations, and achieve a complete mechanistic model of plant growth in low gravity environments.
|
Page generated in 0.0532 seconds