• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Acid-base regulation, calcification and tolerance to ocean acidification in echinoderms / Régulation acide-base, calcification et tolérance à l'acidification des océans chez les échinodermes

Collard, Marie 30 June 2014 (has links)
The current increase in the atmospheric CO2 concentration results in two major consequences in the marine environment: an increase of the sea surface temperature (0.7 °C since pre-industrial times) and a decreased seawater pH. This decrease is being measured continuously in different parts of the world and ranges from -0.0017 to -0.04 units per year according to the location considered. Based on CO2 emissions models provided by the IPCC, it was predicted that the average open ocean pH would decrease further by 0.4 units by 2100 and 0.8 by 2300 (corresponding to about a three-fold and six-fold increase of the proton concentration). Also, saturation states of seawater for the different forms of calcium carbonate, such as calcite, magnesium calcite and aragonite which are produced by calcifying marine organisms, are decreasing and consequently the saturation horizons of these minerals are shoaling. Today, some environments are characterized by pH values lower than the average open ocean pH. These are intertidal rock pools, upwelling zones, the deep-sea and CO2 vents. In these environments, pH is either constantly low or fluctuates. Those changes are either due to biological activity, geological CO2 leakage, or water masses movements. Within these environments, it has been hypothesized that organisms could be adapted or acclimatized to low pH values such as those predicted for the near-future. <p><p>Tolerance to ocean acidification in metazoans is linked to their acid-base regulation capacities when facing environmental hypercapnia (i.e. increased CO2 concentration in the surrounding environment). The latter may result in a hypercapnia of the internal fluids and a concomitant acidosis (i.e. reduced pH of the internal fluids due to the dissociation of CO2 in this case). Organisms have two buffer systems allowing the compensation of this acidosis: the CO2-bicarbonate and the non-bicarbonate buffers. Homeostasis of the internal fluids thanks to these systems is essential for the proper functioning of enzymes and processes. As hypometabolic calcifying osmoconformers, three of the characteristics conferring a relative vulnerability to ocean acidification, echinoderms are considered “at risk” for the near-future conditions. Nonetheless, post-metamorphic (juveniles and adults) echinoderms inhabit all environments showing naturally low pH. Furthermore, sea urchins which are highly calcified (compared to sea stars or sea cucumbers) are also found in these environments. This suggests that echinoderms have strategies to adapt or acclimate to low pH environments. Recent studies indicated that while sea urchins are able to regulate their coelomic (extracellular) fluid by accumulation of bicarbonate, sea stars seem to tolerate the acidosis linked to environmental hypercapnia. However, this information was obtained on a reduced number of species and significant interspecific differences were evidenced. Some taxa have not been investigated at all. Furthermore, several aspects of the acid-base physiology were unexplored, like the buffering capacity of the extracellular fluid and the origin of carbon within these fluids.<p><p>Accordingly, the goal of this study was to characterize the acid-base physiology in post-metamorphic echinoderms of different taxa in order to understand their response to ocean acidification.<p><p>The acid-base regulation capacities within the different echinoderm taxa were compared. A method was designed to measure the total alkalinity in small volumes (500 µl) of the main extracellular fluid (the coelomic fluid). This study showed that regular euechinoids have an increased buffer capacity in their coelomic fluid compared to seawater and the other echinoderm groups. In sea urchins, bicarbonate and non-bicarbonate buffers come into play, the former playing the major role. This buffer capacity was increased in fed individuals compared to fasted ones and increased further when seawater pH was lowered.<p><p>The acid-base regulation capacities of sea urchins from different taxa were investigated. Regular euechinoids possess an increased buffer capacity of the coelomic fluid allowing them to maintain a higher pH compared to cidaroids at current seawater pH. This pattern was found for temperate, tropical and Antarctic sea urchins. Data was also obtained for irregular echinoids which also showed a particularly low extracellular pH and a buffer capacity close to seawater like cidaroids. When exposed to reduced seawater pH (8.0, 7.7, and 7.4) for 4-6 weeks, regular euechinoids showed an increasing buffer capacity of the coelomic fluid accompanied by a homeostasis of the pH. On the contrary, cidaroids showed no changes in their acid-base status whatever the seawater pH (8.0 to 7.4). The origin of coelomic fluid carbon, investigated by stable carbon isotope analysis, also differs according to taxa. The δ13CDIC of regular euechinoids evidenced a mixing between CO2 from metabolic origin and that from the surrounding seawater. This is further supported by the correlation between the seawater signal of reduced pH conditions (modified by the addition of industrial gas, changing the δ13C to more negative values) and that of the coelomic fluid. On the other hand, cidaroids exhibit a signal reflecting principally metabolic CO2 (very negative δ13C), and the δ13C did not change under varying pH conditions (i.e. did not adapt to the seawater δ13CDIC signature). For irregular echinoids, the carbon origin is unclear as some species show signals close to that of regular euechinoids whereas others are similar to cidaroids.<p><p>The impact of acid-base regulation was investigated by testing the effect of ocean acidification on the mechanical properties of the skeleton (test plates) in the sea urchin Paracentrotus lividus. Individuals from intertidal pools, CO2 vents and a one year acidification experiment (pH 8.0, 7.9 and 7.7) were compared. Only the intertidal pool individuals showed a difference of the Young’s modulus and fracture forces of their plates. Sea urchins from the tide pool with the largest pH fluctuations showed a lower stiffness and strengthened test. On the contrary, sea urchins from CO2 vents and experimental acidification did not display any differences in the several mechanical properties tested. We suggest that the different food qualities (calcified vs. uncalcified algae) in the different tide pools significantly contributed to the observed difference.<p><p>The acid-base regulation ability of sea cucumbers was assessed in two species from contrasted habitats (mangrove intertidal vs. coral reef species). These organisms underwent acidosis of the coelomic fluid when exposed to reduced seawater pH for a short time (6 to 12 days). The δ13C signal of the coelomic fluid mirrored that of the surrounding seawater in all conditions, indicating that the CO2 accumulated (cause of the acidosis) comes also from the seawater. This is still unexplained to date. However, metabolic processes such as respiration and ammonium excretion rates were not affected. No difference was evidenced between the two species.<p><p>The results obtained in this study compiled with data from the literature indicate that post-metamorphic echinoderms have contrasted acid-base physiology with most regular euechinoids compensating the coelomic fluid pH by accumulation of bicarbonate ions (and possibly ophiuroids also), cidaroids and at least one regular euechinoid (Arbacia lixula) having a naturally low coelomic fluid pH which is not affected by acidification, and sea stars and sea cucumbers which do not compensate their coelomic fluid pH when submitted to acidified seawater. In regular euechinoids, negative effects are linked to resource allocation with growth usually being reduced in favor of acid-base regulation mechanisms. Starfish and sea cucumbers appear as resilient to acidification, with very few functions being negatively impacted. In conclusion, it seems that post-metamorphic echinoderms studied so far will not be particularly at risk when facing ocean acidification levels expected by 2100. Furthermore, tolerance to ocean acidification does not seem linked to the present day ambient pH regime. Nevertheless, more studies need to be carried out on brittle stars and sea cucumbers to confirm preliminary results, as well as crinoids which have not been investigated to date. Long-term exposure experiments to estimate energy budget changes as well as more assessments of evolutionary potential in echinoderms are crucially needed./L’augmentation actuelle de la concentration en CO2 atmosphérique a deux conséquences majeures dans l’environnement marin :une augmentation de la température des eaux de surface (0.7°C depuis l’époque préindustrielle) et une diminution du pH de l’eau de mer. Cette diminution est mesurée continuellement dans différentes régions du monde et varie de -0.0017 à -0.04 unités de pH par an en fonction du site considéré. Basé sur des modèles d’émissions de CO2 du GIEC, il a été prédit que le pH moyen de l’océan diminuerait encore de 0.4 unités d’ici 2100 et 0.8 d’ici 2300 (correspondant à une augmentation de la concentration en protons d’environ 3 fois et 6 fois). De même, les états de saturation de l’eau de mer vis-à-vis des différentes formes de carbonate de calcium, telles que la calcite, la calcite magnésienne et l’aragonite produites par les organismes calcifiants, sont en train de diminuer et par conséquent, les horizons de saturation remontent vers les eaux de surface. Aujourd’hui, certains environnements sont caractérisés par des valeurs de pH plus basses que celle de l’océan. Ceux-ci sont les mares intertidales, les zones d’upwelling, l’océan profond et les évents volcaniques. Dans ces environnements, le pH est soit constamment bas ou fluctue. Ces changements sont soit dû à une activité biologique, une fuite de CO2 géologique, ou au mouvement des masses d’eau. Dans ces environnements, il a été suggéré que les organismes pourraient être adaptés ou acclimatés à des valeurs basses de pH, telles que celles prédites pour le futur proche.<p> <p>La tolérance à l’acidification des océans chez les métazoaires est liée à leur capacité de régulation acide-base lorsqu’ils sont exposés à une hypercapnie environnementale (c’est-à-dire, une augmentation de la concentration en CO2 dans l’environnement entourant l’organisme). Ce phénomène peut résulter en une hypercapnie des liquides internes et une acidose concomitante (c’est-à-dire, un pH des liquides internes réduit dû à la dissociation du CO2 dans ce cas précis). Les organismes ont deux systèmes tampons leur permettant de compenser l’acidose :les tampons CO2-bicarbonate et non-bicarbonate. L’homéostasie des liquides internes grâce à ces systèmes est essentielle pour le fonctionnement correct des enzymes et processus. En tant qu’osmoconformes calcifiant hypométaboliques, trois caractéristiques menant à une certaine vulnérabilité face à l’acidification des océans, les échinodermes sont considérés « à risque » pour les conditions du futur proche. Cependant, les échinodermes post-métamorphiques (juvéniles et adultes) occupent tous les environnements montrant un pH faible naturellement. De plus, les oursins qui sont hautement calcifiés (par rapport aux étoiles de mer ou aux concombres de mer) sont également retrouvés dans ces environnements. Ceci suggère que les échinodermes ont des stratégies d’adaptation ou d’acclimatation à ces environnements à bas pH. Alors que des études récentes montrent que les oursins sont capables de réguler le pH du liquide cœlomique (extracellulaire) par l’accumulation de bicarbonates, les étoiles semblent tolérer l’acidose liée à l’hypercapnie environnementale. Néanmoins, ces informations ont été obtenues sur un petit nombre d’espèces et des différences interspécifiques significatives ont été mises en évidence. Certains taxa n’ont pas été étudié du tout. Par ailleurs, différents aspects de la physiologie acide-base sont inexplorés, tels que la capacité tampon du liquide extracellulaire et l’origine du carbone dans ces liquides.<p><p>Par conséquent, le but de cette étude était de caractériser la physiologie acide-base chez les échinodermes post-métamorphiques de différents taxa afin de comprendre leur réponse à l’acidification des océans.<p><p>Les capacités de régulation acide-base au sein des différents groupes d’échinodermes ont été comparées. Une méthode a été mise au point afin de mesurer l’alcalinité totale dans de petits volumes (500 µl) de liquide extracellulaire (le liquide cœlomique). Cette étude démontra que la capacité tampon du liquide cœlomique des euéchinoïdes réguliers est accrue comparée à celle de l’eau de mer ainsi que celle des autres groupes d’échinodermes. Dans les oursins, les tampons bicarbonate et non-bicarbonate entrent en jeux, le premier étant majoritaire. Cette capacité tampon est augmentée chez les individus nourris par rapport à ceux à jeuns et est augmentée plus encore lorsque le pH de l’eau de mer est diminué.<p><p>Les capacités de régulation acide-base ont été étudiées plus spécifiquement dans les différents groupes d’oursins. Les euéchinoïdes réguliers possèdent une capacité tampon accrue du liquide cœlomique leur permettant de maintenir un pH élevé comparé aux oursins cidaroïdes, au pH de l’eau de mer actuel. Ce patron se retrouve dans les oursins tempérés, tropicaux et antarctiques. Des données ont également été obtenues pour les oursins irréguliers qui ont également un pH extracellulaire particulièrement bas et une capacité tampon proche de celle de l’eau de mer comme les cidaroïdes. Lorsqu’ils sont exposés à un pH de l’eau de mer réduit (7.7 et 7.4 par rapport à 8.0) pour 4 à 6 semaines, les euéchinoïdes réguliers ont montré une augmentation de la capacité tampon du liquide cœlomique accompagnée d’une homéostasie du pH de ce liquide. A l’inverse, les cidaroïdes n’ont montré aucune modification de leur statut acide-base quel que soit le pH (8.0 à 7.4). L’origine du carbone du liquide cœlomique, étudié par analyse des isotopes stables du carbone, diffère également en fonction du groupe. Le δ13CDIC des euéchinoïdes réguliers met en évidence un mélange entre du CO2 d’origine métabolique et celui de l’eau environnante. Ceci est également démontré par la corrélation entre le signal de l’eau de mer dont le pH est réduit (modifié par l’ajout de CO2 industriel, changent le δ13C vers des valeurs plus négatives) et celui du liquide cœlomique. En revanche, les cidaroïdes montrent un signal reflétant principalement celui du CO2 métabolique (δ13C très négatif), et le δ13C n’est pas influencé par des conditions de pH variées (c’est-à-dire, qu’il ne s’adapte pas à la signature du δ13CDIC de l’eau de mer). Pour les oursins irréguliers, l’origine du carbone est incertaine puisque certaines espèces montrent un signal proche de celui des euéchinoïdes réguliers et d’autres similaire à celui des cidaroïdes.<p><p>L’impact de la régulation acide-base a été étudié en testant l’effet de l’acidification des océans sur les propriétés mécaniques du squelette (plaques squelettiques) de l’oursin Paracentrotus lividus. Des individus de mares intertidales, d’évents volcaniques et d’une expérience d’acidification d’un an (pH 8.0, 7.9 et 7.7) ont été comparés. Seuls les individus des mares intertidales montrèrent une différence pour le module de Young et la force des fractures des plaques. Les oursins venant de la mare intertidale montrant les plus grandes variations de pH avaient une rigidité plus faible et un squelette renforcé. A l’inverse, les oursins des évents volcaniques et de l’expérience d’acidification n’ont montrés aucune différence dans les diverses propriétés mécaniques étudiées. Nous suggérons que les variations en termes de qualité de nourriture (algues calcifiées vs. non-calcifiées) dans les différentes mares intertidales ont contribués de manière significative à la différence observée.<p><p>L’habilité des concombres de mer à réguler leur balance acide-base a été évaluée dans deux espèces d’habitats contrastés (espèce intertidale des mangroves vs. subtidale des récifs coralliens). Ces organismes ont subis une acidose du liquide cœlomique lorsqu’ils ont été exposés à un pH réduit de l’eau de mer pour une courte durée (6 à 12 jours). Le signal δ13C du liquide cœlomique reflétait celui de l’eau environnante dans toutes les conditions, indiquant que le CO2 accumulé (cause de l’acidose) venait de l’eau. Ceci est encore inexpliqué à l’heure actuelle. Cependant, les processus métaboliques tels que la respiration ou l’excrétion d’ammonium n’ont pas été affecté. Aucune différence n’a été observée entre les deux espèces.<p><p>Les résultats obtenus dans cette étude compilés avec ceux de la littérature indiquent que les échinodermes post-métamorphiques ont une physiologie acide-base contrastée avec la plupart des euéchinoïdes réguliers qui compensent le pH du liquide cœlomique par l’accumulation d’ions bicarbonates (et peut-être les ophiures aussi), les cidaroïdes et au moins un euéchinoïde régulier (Arbacia lixula) qui ont naturellement un pH du liquide cœlomique bas et qui ne sont pas affectés par l’acidification, et les étoiles de mer et les concombres de mers qui ne compensent pas le pH du liquide cœlomique lorsqu’ils sont soumis à une eau acidifiée. Chez les euéchinoïdes réguliers, des effets négatifs sont liés à un changement de l’allocation des ressources avec souvent un taux de croissance réduit en faveur des mécanismes de régulation acide-base. Les étoiles de mer et les concombres de mer apparaissent plus tolérants à l’acidification, avec peu de fonctions négativement impactées. En conclusion, il semble que les échinodermes post-métamorphiques étudiés jusqu’à présent ne seront pas particulièrement à risque lorsqu’ils seront exposés au niveau d’acidification attendu pour 2100. De plus, la tolérance à l’acidification des océans ne semble pas liée au régime de pH subit actuellement. Cependant, plus d’études doivent être menées sur les ophiures et les concombres de mer afin de confirmer les résultats préliminaires, ainsi que sur les crinoïdes qui n’ont à l’heure actuelle pas encore été étudiés. Des expériences à long terme afin d’estimer le budget énergétique des organismes ainsi que plus d’évaluations du potentiel d’évolution chez les échinodermes sont absolument nécessaires.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0479 seconds