• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nouvelles méthodes numériques pour les écoulements en eaux peu profondes

Beljadid, Abdelaziz January 2015 (has links)
Dans ce projet de recherche, on s’intéresse au développement et à l’évaluation de nouvelles méthodes numériques pour les écoulements peu profonds. De nouvelles techniques de discrétisation spatiales et temporelles des équations sont proposées. Une partie de la thèse est dédiée au développement d’une méthode des volumes finis explicite d’ordre élevé et d’une famille de schémas semi-implicites qui sont efficaces pour la modélisation des processus lents et rapides dans les écoulements océaniques et atmosphériques. La deuxième partie du projet de recherche concerne la construction d’un schéma numérique efficace sans solveur de Riemann pour les écoulements peu profonds avec une topographie variable sur un maillage non structuré. Dans cette partie de la thèse, une nouvelle approche est proposée pour l'analyse de stabilité des schémas numériques non structurés pour les équations en eaux peu profondes. Dans la troisième partie de la thèse, deux schémas de volumes finis sont développés pour les lois de conservation sur des surfaces courbes qui ont un large potentiel d’être appliqués aux écoulements peu profonds sur la sphère. Dans ces cas, les schémas numériques sont développés en adoptant la démarche suivie par Stanley Osher. Cette démarche consiste à utiliser des systèmes hyperboliques simples qui génèrent des phénomènes d'ondes complexes et des solutions qui ont différentes structures. Ces solutions sont très efficaces pour tester les méthodes numériques. Dans notre cas, nous avons utilisé les équations de Burgers qui ont joué un rôle très important dans le développement des schémas numériques à capture de chocs en mécanique des fluides. Dans le premier article, une nouvelle méthode des volumes finis décentrée explicite est proposée pour le système de Saint-Venant avec un terme source qui comprend le paramètre de Coriolis en utilisant un maillage non structuré. La plupart des schémas numériques décentrés, efficaces pour les ondes rapides (ondes de gravité), conduisent à un niveau d'amortissement élevé pour les ondes lentes (ondes de Rossby). La méthode proposée donne de bons résultats à la fois pour les ondes de gravité et les ondes de Rossby. Les techniques proposées sont suffisantes pour supprimer le bruit numérique des ondes courtes sans amortissement des ondes longues, telles que les ondes de Rossby qui sont essentielles dans le transport de l’énergie dans les océans et l'atmosphère. Dans le cas où le système comprend une large gamme de fréquences des ondes, ce qui est le cas des écoulements atmosphériques, il est important d’utiliser des méthodes semi-implicites afin d’opter pour un pas de temps optimal. La méthode semi-implicite semi-lagrangienne à deux niveaux (SETTLS) proposée par Hortal (2002) a une région de stabilité absolue indépendante du nombre de Courant-Friedrichs-Lewy (CFL). La plupart des modèles de prévision numérique atmosphérique utilisent cette méthode comme schéma temporel. Cependant, la méthode SETTLS peut générer des oscillations pour le traitement du terme non linéaire surtout pour le cas des solutions qui ont un caractère oscillatoire. Pour remédier à ce problème, dans le deuxième article, nous avons proposé une nouvelle classe de schémas semi-implicites semi-lagrangiens potentiellement applicables aux modèles atmosphériques. Cette classe de schémas numériques présente plusieurs avantages de stabilité, de précision et de convergence. De bons résultats sont obtenus en comparaison à d'autres schémas semi-implicites semi-lagrangiens et méthodes semi-implicites de type prédicteur-correcteur. Dans le troisième article, un nouveau schéma équilibre partiellement centré est développé pour la résolution numérique des équations de Saint-Venant avec une topographie variable sur un maillage non structuré. Cette méthode est stable et simple puisqu'elle ne fait pas appel à la résolution du problème de Riemann. La méthode proposée est précise pour le cas des solutions discontinues et peut être appliquée aux écoulements peu profonds avec une topographie variable et une géométrie complexe où l'utilisation des maillages non structurés est avantageuse. Motivé par de nombreuses applications en dynamique des fluides, dans le projet de thèse on s’intéresse également au développement de méthodes numériques dans le cas des surfaces courbes. L'objectif est de concevoir des méthodes numériques robustes et efficaces pour le cas des solutions discontinues et qui préservent la structure fondamentale des équations, notamment les propriétés liées à la géométrie. Pour développer ces méthodes, l'approche suivie par Stanley Osher est adoptée et les équations de Burgers sont utilisées vu leur importance pour le développement des schémas numériques à capture de chocs. Dans le quatrième article, une méthode des volumes finis satisfaisant la compatibilité géométrique est développée pour les lois de conservation sur la sphère. Cette méthode est basée sur la résolution du problème de Riemann généralisé et l'approche du «splitting» directionnel en latitude et en longitude sur la sphère. Les dimensions géométriques sont considérées de manière analytique et la forme discrète du schéma numérique proposé respecte la propriété de compatibilité géométrique. La méthode proposée est stable et précise pour le cas des solutions discontinues de grands chocs et amplitudes en comparaison avec des schémas numériques très connus. Une nouvelle classification des flux est proposée en introduisant les notions de flux feuilletés et de flux génériques. Le comportement asymptotique des solutions est étudié en fonction de la nature du flux et les propriétés des solutions discontinues sont analysées. Les résultats démontrent la capacité et le potentiel de la méthode proposée pour la résolution des lois de conservation sur la sphère dans le cas des solutions discontinues. Ce schéma numérique pourrait être étendu au cas des équations de Saint-Venant sur la sphère. Dans le cinquième article, on propose un schéma numérique efficace respectant la propriété de compatibilité géométrique pour les lois de conservation sur la sphère. La méthode proposée présente plusieurs avantages, notamment de bons résultats dans le cas des solutions discontinues avec des chocs d’amplitudes moyennes, une faible dissipation numérique et une simplicité puisqu'elle ne fait pas appel à la résolution du problème de Riemann. Cette méthode pourrait être étendue au cas des équations de Saint-Venant sur la sphère. Dans le sixième article, une nouvelle approche est proposée pour analyser la stabilité des schémas numériques appliqués aux écoulements peu profonds. Cette méthode utilise la notion du pseudo spectre des matrices. La méthode proposée est efficace en comparaison avec les méthodes couramment utilisées telles que la stabilité asymptotique et la stabilité de Lax-Richtmyer. Cette approche est utile pour le choix du type de maillage, des emplacements appropriés des variables primitives (hauteur et vitesses), et de la méthode de discrétisation la plus stable.
2

Nouvelles méthodes numériques pour les écoulements en eaux peu profondes / New numerical methods for shallow water flows

Beljadid, Abdelaziz 09 July 2015 (has links)
Dans ce projet de recherche, on s'intéresse au développement et à l'évaluation de nouvelles méthodes numériques pour les écoulements peu profonds. De nouvelles techniques de discrétisation spatiales et temporelles des équations sont proposées. La première partie de la thèse est dédiée au développement d'une méthode des volumes finis explicite d'ordre élevé et d'une famille de schémas semi-implicites qui sont efficaces pour la modélisation des processus lents et rapides dans les écoulements océaniques et atmosphériques. La deuxième partie du projet de recherche concerne la construction d'un schéma numérique efficace sans solveur de Riemann pour les écoulements peu profonds avec une topographie variable sur un maillage non structuré. Dans cette partie de la thèse, une nouvelle approche est proposée pour l'analyse de stabilité des schémas numériques non structurés pour les équations en eaux peu profondes. Dans la troisième partie de la thèse, deux schémas de volumes finis sont développés pour les lois de conservation sur des surfaces courbes qui ont un large potentiel d'être appliqués aux écoulements peu profonds sur la sphère. Dans ces cas, les schémas numériques sont développés en adoptant la démarche suivie par Stanley Osher. Cette démarche consiste à utiliser des systèmes hyperboliques simples qui génèrent des phénomènes d'ondes complexes et des solutions qui ont différentes structures. Ces solutions sont très efficaces pour tester les méthodes numériques. Dans notre cas, nous avons utilisé les équations de Burgers qui ont joué un rôle très important dans le développement des schémas numériques à capture de chocs en mécanique des fluides. / This research project focuses on the development and evaluation of numerical methods for shallow flows by proposing new spatial and temporal discretization techniques. First, a new high-order explicit finite volume method and a class of semi-implicit schemes are introduced which are effective for modelling fast and slow waves in oceanic and atmospheric flows. In the second part of the research project, a central-upwind scheme is proposed for shallow water flows on variable topography using unstructured grids. In this part of the project, a new approach is proposed for the stability analysis of unstructured numerical schemes for shallow water equations. In the third part of the thesis, two finite volume methods are developed for the conservation laws on curved geometries which are potentially applicable to shallow flows on a sphere. For such cases, numerical schemes are developed by using the approach followed by Stanley Osher. This approach employs simple hyperbolic systems which generate complex wave phenomena, and solutions that are effective for assessing numerical methods. In our case, Burgers’ equations are used since they have played an important role in the development of shock-capturing schemes in fluid mechanics.
3

Modèles numériques directs et inverses d'écoulements de fluides

Monnier, Jerome 22 November 2007 (has links) (PDF)
Ce mémoire d'Habilitation à Diriger des Recherches (HDR) retrace dix années de recherche en tant que maître de conférences, autour de modèles d'EDP appliqués à des écoulements de fluides. On y trouve aussi bien des aspects analyse mathématique, qu'analyse numérique, algorithmique ou encore calcul et mise en oeuvre informatique. Les principaux modèles d'EDP abordés sont les équations de Navier-Stokes ou Stokes surface libre (micro-fluidique, glaciologie), les équations de St-Venant ou asymptotique "shallow" (hydraulique fluviale, glaciologie). L'orientation de ces études vers les thématiques applicatives a conduit à élaborer des modèles numériques potentiellement applicables aux problèmes réels posés. Ainsi, les aspects calibration de modèles, optimisation, identification, analyse de sensibilité et assimilation de données (via le contrôle optimal) y sont largement représentés. En termes de réalisation de logiciels prototypes, sont présentés un code d'hydraulique fluviale (inondations) dédié à l'analyse de sensibilité, l'assimilation variationnelle de données et le couplage, un code surface libre d'impact de gouttelettes (2D axisymétrique ALE) et un code d'optimisation de forme appliqué à l'électro-capillarité. <br /> Le premier chapitre présente des analyses mathématiques et analyse de schémas éléments finis basées sur des troncatures. Un second chapitre décrit un cadre mathématique et algorithmique pour l'optimisation de forme, avec applications à un modèle Navier-Stokes - thermique radiative et à une gouttelette électrifiée (électro-capillarité). Un troisième chapitre traite de la modélisation numérique de la dynamique d'une gouttelette sur un substrat solide. La dynamique de la ligne triple y est décrite à l'aide du modèle de Shikhmurzaev. Dans un quatrième chapitre sont présentés plusieurs travaux autour d'écoulements fluviaux et zones d'inondations (St-Venant 1.5D-2D, schémas volumes finis). Les processus de calibrage de modèles, de couplage et d'assimilation variationnelle de données constituent une grand part des travaux. Des applications à des écoulements réels avec données non standards (trajectoires lagrangiennes, image satellite) démontrent la potentialité des méthodes développées. Le dernier chapitre traite des travaux récemment initiés et tout particulièrement ceux relatifs aux calottes polaires (Stokes non-Newtonien et équations asymptotiques). Parmi les difficultés mathématiques soulevées figurent la réduction de modèles (asymptotique, réduction d'ordre), le couplage, la sensibilité des modèles aux erreurs et aux paramètres, et enfin l'assimilation de données et le calibrage.

Page generated in 0.0937 seconds