Spelling suggestions: "subject:"écoulement transitoire""
1 |
Contributions au traitement des signaux ultrasonores pour des mesures instantanées en écoulements transitoires / Contribution of ultrasound signal processing for the instantaneous transitory flow measurementsMurgan, Irina 23 November 2017 (has links)
L’objectif de cette thèse est proposer des méthodes de traitement des signaux ultrasonores pour améliorer le calcul des vitesses d’écoulements transitoires à l’intérieur des conduites en mode non intrusive et en conditions complexes de mesure. Par conditions complexes nous entendons des fortes et, respectivement, des basses vitesses d’écoulement ainsi que des mesures en contexte d’un écoulement transitoire ou turbulent. Classiquement, la vitesse de l’écoulement d’un fluide peut être estimée, de manière non intrusive, avec des ultrasons par le biais des débitmètres à temps de transit. Les débitmètres à temps de transit conventionnels sont basés sur l’émission alternée des pulses acoustiques mono-fréquentielles (donc, à bande étroite) et le calcul de la différence absolue entre les temps de vol dans le sens de l’écoulement (direct) et le sens opposé (inverse). La vitesse du fluide (et le débit), ou plutôt la précision de ces grandeurs, reposent principalement sur l’estimation de cette différence. La partie sensible de cette technique est le choix du seuil (en admettant que le signal reçu n’est pas affecté par d’autres phénomènes comme des échos parasites, atténuation excessive ou des effets Doppler) déterminé principalement de façon empirique: au-dessus de 50% ou 80% de la valeur maximale attendue du signal. Des techniques pour automatiser et réduire l’erreur de mesure sont tout à fait envisageables et qui assurent une précision acceptable dans des conditions de mesure presque idéales. Néanmoins, hormis les cas des figures ayant des conditions de mesure idéalisées, il existe plusieurs scénarii où les techniques actuelles sont déficitaires: le désalignement des capteurs, une vitesse d’écoulement trop forte qui conduit à l’effet «flow blow», les écoulements bi-phasiques et/ou la présence de l’effet Doppler. Ces constats, présentés dans le deuxième chapitre du manuscrit, nous ont conduit à envisager, dans le cadre de cette thèse, des axes de recherche qui ont pour objectif commun de fournir les outils de traitement du signal capables de lever les verrous opérationnels. Ainsi, les principes de traitement du signal envisagés pour répondre à cet objectif sont: le principe des signaux à large bande qui confère au système de traitement du signal une résolution plus fine et une meilleure robustesse aux perturbations; le concept de compressive sensing afin de reconstruire les échantillons perdus suite aux interférences au point de réception; le principe de formation de voie et le principe des multi-cordes qui permet d’évaluer le profil de vitesse dans une section de la conduite. / The purpose of this thesis is to propose ultrasonic signal processing methods in order to improve the transitory flow velocity non-intrusive detection through pipes, in complex measurement conditions. By complex measurement conditions, we refer to high or very low flow rates and also to transitory or turbulent flows. Usually, the flow velocity can be non-intrusive estimated, using ultrasonic flow meters based on transit time estimation. Conventional transit time flowmeters are based on the alternating emission of single-frequency acoustic pulses (ie, narrow-band acoustic pulses) and the calculation of the absolute difference between flight times in the direction of flow (direct) and in the opposite direction (reverse). The fluid velocity (and the flow rate), or rather the precision of estimation of these quantities, rest mainly on the estimation of this difference. The sensitive part of this technique is the choice of the threshold (assuming that the received signal is not affected by other phenomena such as echoes, excessive attenuation or Doppler effects) determined mainly empirically: above 50% or 80% of the maximum expected value of the signal. Techniques for reducing measurement errors are quite conceivable and provide acceptable accuracy under almost ideal measurement conditions. However, apart from the case with idealized measurement conditions, there are several scenarios where current techniques are deficient: sensor misalignment, excessive flow velocity which leads to the “flow blow” effect, two-phase flow and / or the presence of the Doppler effect. These facts, presented in the second chapter of the manuscript, led us to consider, within the framework of this thesis, research axes whose common objective are to provide the signal processing tools capable of lifting the operational locks. Thus, the signal processing principles considered to meet this objective are: the principle of wide-band signals which gives the signal processing system a finer resolution and better robustness to disturbances; the concept of compressing sensing in order to reconstruct the missing samples due to interference at the reception point; the principle of beamforming and the principle of multi-paths which makes it possible to evaluate the velocity profile in a pipe section.
|
2 |
Development of a coupled SPH-ALE/Finite Volume method for the simulation of transient flows in hydraulic machines / Développement d’une méthode couplée SPH-ALE / Volumes Finis pour la simulation des écoulements transitoires dans les machines hydrauliquesNeuhauser, Magdalena 18 December 2014 (has links)
L'utilisation croissante des sources d'énergie renouvelable avec une grande volatilité de production, comme l'énergie éolienne et solaire, conduit à des fluctuations dans le réseau électrique qui doivent être compensées. Pour cette raison les machines hydrauliques, turbines et pompes, sont plus souvent opérées dans les régimes de fonctionnement hors fonctionnement nominal et la fréquence des phases de démarrage et arrêt augmente. Ce type de fonctionnement peut avoir des conséquences importantes sur le cycle de vie des machines. Il est donc essentiel de prendre en compte l'écoulement dans les phases transitoires lors de la conception de la machine et la simulation numérique des écoulements est un outil adapté pour cela. La présente étude a pour objectif de développer une méthode de couplage flexible qui combine la méthode à maillage volumes finis (VF) et la méthode sans maillage Smoothed Particle Hydrodynamics - Arbitrary Lagrange Euler (SPH-ALE). Cette méthode couplée peut être utilisée comme outil pour l'investigation des phénomènes transitoires dans les machines hydrauliques. SPH-ALE est particulièrement bien adapté aux simulations des écoulements fortement dynamiques avec des géométries mobiles mais elle a des difficultés pour calculer des forts gradients de pression et vitesse. Un raffinement de particules est difficile à implémenter, surtout si les particules doivent être raffinées de manière anisotrope. Les méthodes volumes finis (VF) sont établies pour les simulations numériques d'écoulements grâce à leur stabilité et précision. Par contre, elles peuvent être lourdes pour les simulations avec des géométries mobiles et demandent souvent une interface entre des parties mobiles et statiques du maillage ce qui génère des erreurs supplémentaires. Pour combiner les deux approches complémentaires, une méthode de couplage a été développée qui décompose le domaine de calcul en zones où la vitesse et la pression sont calculées par la méthode VF, en zones où elles sont obtenues par SPH-ALE et en zones de recouvrement où les informations sont transférées de la zone VF à la zone SPH et inversement. Dans les zones de recouvrement les points de calcul VF sont utilisés comme voisins pour l'intégration en espace des particules SPH. Aux limites du maillage VF la vitesse et la pression sont interpolées des particules SPH, similairement aux méthodes Chimére des maillages recouvrants. Un logiciel SPH-ALE existant du groupe ANDRITZ est utilisé pour cette étude. Un solveur VF faiblement compressible est implémenté dans ce logiciel. Le solveur discrétise la même forme des équations de Navier-Stokes que le solveur SPH-ALE. Des solveurs de Riemann avec des états reconstruits par la méthode MUSCL sont employés. En outre, le solveur SPH-ALE est amélioré et adapté aux écoulements internes. Pour cette raison des conditions à l'entrée et à la sortie du type subsonique sont implémentées. Du plus, une méthode de correction du gradient de la fonction kernel est présentée qui améliore la précision du champ de pression, notamment si les particules ne sont pas distribuées régulièrement. La méthode couplée est validée à l'aide des cas test académiques en unidimensionnel et en bidimensionnel, comme le cas de tube à choc, les tourbillons de Taylor-Green et l'écoulement autour d'une aube symétrique du type NACA avec des particules en description eulérienne. En outre, le couplage offre la possibilité d'imposer des conditions à la sortie aux particules lagrangiennes. La méthode est appliquée aux simulations d'écoulement transitoire en 2D avec des particules qui se déplacent en suivant les géométries mobiles. / The increased use of intermittent forms of renewable energy like wind and solar energy produces fluctuations in the electric grid that have to be compensated. For this reason, hydraulic machines like turbines and pumps are more often operated under non-conventional operating conditions and are submitted to frequent starts and stops. This type of operating conditions has important consequences on the life cycle of the machines. It is thus of paramount importance that transient flows at off-design conditions are properly taken into account in the design phase and numerical simulation is an appropriate way to do so. The present study aims at developing a flexible coupling method of the meshbased Finite Volume Method (FVM) and the meshless Smoothed Particle Hydrodynamics - Arbitrary Lagrange Euler (SPH-ALE) method, which can be used as a tool for the investigation of transient phenomena in hydraulic machines. SPH-ALE is very well adapted for the simulation of highly dynamic flows with moving geometries but has difficulties to correctly represent rapidly changing gradients of the field variables. Particle refinement is difficult to implement, especially if particles are refined in an anisotropic way. FV methods are well established in CFD because of their accuracy and stability. However, they can be tedious for simulations with moving geometries and often necessitate an interface between moving and static parts of the mesh which introduces additional errors. To overcome the shortcomings of both methods, a coupling method is developed that uses a decomposition of the computational domain into regions where the physical field variables are computed by the FV method, regions where they are computed by SPH-ALE and overlapping regions where the information is transferred from the FV domain to the SPH domain and vice versa. In the overlapping regions FV calculation points are used as neighbors for the SPH integration in space. At the boundaries of the FV mesh, velocity and pressure are interpolated from the SPH particles by means of scattered data interpolation techniques, similarly to Chimera methods for overlapping grids. For this study, an existing SPH-ALE software of the ANDRITZ Group is used. A weakly compressible FV solver is implemented into this software that discretizes the same form of the Navier-Stokes equations than the SPH-ALE solver. Similar to the present SPH-ALE method, Riemann solvers with reconstructed states, obtained by a MUSCL scheme, are employed. Moreover, adaptations and improvements of the SPH-ALE solver itself are made, which are important for the coupling and for the simulation of internal flows in general. Thus, subsonic inlet and outlet conditions are implemented. Furthermore, a correction method of the kernel gradient is presented that ensures zeroth order consistency of the SPH-ALE approximation of the divergence of the convective fluxes. The correction improves greatly the SPH pressure field on non-uniform particle distributions. The implemented coupled method is successfully validated by means of inviscid academic one-dimensional and two-dimensional testcases like a shock tube case, Taylor-Green vortices and the flow around a symmetric NACA airfoil with particles in Eulerian description. Furthermore, the coupling provides a possibility to implement outlet boundary conditions to Lagrangian moving SPH particles. It is then applied to the simulation of transient flows in rotor stator systems in 2D with moving particles.
|
3 |
Kinetic modeling of the transient flows of the single gases and gaseous mixturesHo, Minh Tuan 30 September 2015 (has links)
Un gaz à l'intérieur d’un microsystème ou d’un milieu poreux est dans un état hors équilibre, car le libre parcours moyen des molécules est comparable à la dimension caractéristique du milieu. Ce même état degaz, appelé raréfié, se retrouve en haute altitude ou dans un équipement de vide à basse pression. Ces gaz raréfiés suivent des types d’écoulements qui peuvent être décrits par des modèles cinétiques dérivés de l'équation de Boltzmann. Dans ce travail nous présentons les principaux modèles et leurs mises en oeuvre numériquepour la simulation des écoulements de gaz raréfiés. Parmi les modèles utilisés nous présentons les deux modèles complets de l'équation de Boltzmann, le modèle de Shakhov(S-model) pour un gaz monoatomique et le modèle de McCormack pour un mélange de gaz toujours monoatomiques. La méthode des vitesses discrètes est utilisée pour la discrétisation numérique dans l'espace des vitesses moléculaires et le schéma de type TVD est mis en œuvre dans l'espace physique. L’aspect original de ce travail se situe sur les régimes transitoires et, en particuliersur les comportements non-stationnaires des transferts de chaleur et de masse. Cependant, pour certaines configurations nous considérons uniquement les conditions stationnaires des écoulements et un schéma implicite est développé afin de réduire le coût de calcul. En utilisant ces approches numériques, nous présentons les résultats pour plusieurs types d’écoulements non-stationnaires, de gaz raréfiés monoatomiqueset de mélanges binaires de gaz monoatomiques. / A gas inside the microsystems or the porous media is in its non-equilibrium state, due to the fact that the molecular mean free path is comparable to the characteristic dimension of the media. The same state of a gas, called rarefied, is found at high altitude or in the vacuum equipment working at low pressure. All these types of flow can be described by the kinetic models derived from the Boltzmann equation. This thesis presents the development of the numerical tools for the modeling and simulations of the rarefied gas flows. The two models of the full Boltzmann equation, the Shakhov model (S-model) for the single gas and the McCormack model for the gas mixture, are considered. The discrete velocity method is used to the numerical discretization in the molecular velocity space and the TVD-like scheme is implemented in the physical space. The main aspect of this work is centered around the transient properties of the gas flows and, especially, on the transient heat and mass transfer behaviors. However, for some configurations only steady-state solutions are considered and the implicit scheme is developed to reduce the computational cost. Using the proposed numerical approach several types of the transient rarefied single gas flows as well as the binary mixture of the monoatomic gases are studied.
|
4 |
Modélisation et caractérisation dynamique des circuits d'admission et d'échappement des moteurs à combustion interneBordjane, Mustapha 13 March 2013 (has links) (PDF)
Les écoulements dans les circuits d'admission et d'échappement des moteurs à combustion interne jouent un rôle majeur pour la détermination des différents rendements (volumétrique, de balayage et mécanique), la puissance indiquée, les performances, les émissions et en établissant le champ d'écoulement dans le cylindre. Lorsque les gaz s'écoulent transitoirement à travers ces systèmes, l'ensemble des forces de frottement, de pression et d'inertie de gaz sont présentes. L'importance relative de ces forces dépend de la vitesse du gaz et les dimensions et les formes de tels systèmes. Traditionnellement, ces écoulements sont étudiés au moyen des équations de dynamique des gaz unidimensionnelles (1D) où, le phénomène tridimensionnel de l'écoulement et la déformation des ondes de pression, la turbulence et la viscosité sont ignorés ou négligés. L'approche thermodynamique (0D) a été aussi utilisée où l'effet important d'inertie de fluide lié aux dimensions des composantes de ces circuits d'admission et d'échappement a été ignoré. Dans cette étude, la méthode de vidange remplissage, a été complètement révisée et une nouvelle méthode (Méthode Inertielle Capacitive MIC), basée sur la formulation thermodynamique de la méthode de vidange remplissage et sur l'équation fondamentale de la conservation de la quantité de mouvement, est développée. L'objectif est ensuite de tenir compte des effets d'inertie de fluide sur le comportement de fluide ou de l'écoulement sans utilisation du code unidimensionnel 1D (à cause du long temps de calcul). Pour cet objectif, des analyses de calcul CFD ont été élaborées afin de calculer les paramètres de calage de " la méthode inertielle capacitive " correspondant au nouveau modèle. Dans cette étude, il est apparu que les effets d'inertie ignorés de la formulation de la méthode de vidange remplissage sont les causes pour que cette dernière soit valable uniquement pour les circuits compacts d'admission et d'échappement de MCI. Pour valider le nouveau modèle, une investigation expérimentale a été réalisée sur un moteur monocylindrique à quatre temps. Le débit volumétrique du moteur est ensuite calculé avec le nouveau modèle. Le résultat est comparé à celui issu de l'expérimental et un bon accord a été obtenu.
|
Page generated in 0.0911 seconds