• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • Tagged with
  • 14
  • 11
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The genotype-phenotype relationship across different scales / La relation génotype-phénotype vue à différentes échelles

Kemble, Henry 31 October 2018 (has links)
Avec la révolution moléculaire en biologie, une compréhension des mécanismes de la relation génotype-phénotype est devenue possible. Récemment, les progrès réalisés dans la synthèse et le séquençage de l’ADN ont permis le développement d’expériences de deep-mutational scanning capable de quantifier divers phénotypes pour un ensemble de génotypes sur toute la longueur d’un gène. Ces ensembles de données sont non seulement intéressants en eux-mêmes, mais permettent également de tester de manière rigoureuse des modèles phénotypiques quantitatifs. Nous avons utilisé cette technologie pour caractériser les cartes séquence-fitness de 3 systèmes bactériens modèles: un régulateur global, la CRP, une enzyme de résistance aux antibiotiques, la β-lactamase, et une petite voie métabolique constituée des enzymes AraA et AraB. Ces systèmes ont été choisis pour éclairer les rôles de différentes caractéristiques dans la formation de la relation génotype-fitness (réseaux de régulations, stabilité des protéines et flux métabolique). Nous constatons que la tendance globale des effets sur le fitness semble prévaloir sur les tendances spécifiques. Ceci nous conduit à penser qu’une grande partie de la relation entre le génotype et le fitness pourrait être expliquée à partir de la forme des fonctions de phénotype-fitness. Par ailleurs, nous voyons que la caractérisation de la relation génotype-fitness dans différents systèmes peut être un moyen puissant d’obtenir des informations sur les phénotypes pertinents. / With the molecular revolution in Biology, a mechanistic understanding of the genotype-phenotype relationship became possible. Recently, advances in DNA synthesis and sequencing have enabled the development of deep-mutational scanning experiments, capable of scoring comprehensive libraries of genotypes for a variety of phenotypes over the length of entire genes. Such datasets are not only interesting in themselves, but also allow rigorous testing of quantitative phenotypic models. We used this technology to characterise sequence-fitness maps for 3 model bacterial systems: a global regulator, CRP, an antibiotic-resistance enzyme, β-lactamase, and a small metabolic pathway, consisting of the enzymes AraA and AraB. These different systems were chosen to illuminate the roles of different mechanistic features in shaping the genotype-fitness relationship (regulatory wiring, protein stability and metabolic flux). We find that smooth patterns of fitness effects tend to prevail over idiosyncrasy, indicating that much of the genotype-fitness relationship could be understood from the global shape of smooth underlying phenotype-fitness functions. On the flip side, we see that characterising the genotype-fitness relationship in different systems can be a powerful way to glean phenotypic insights.
12

Contribution à l'identification de facteurs de résistance au paludisme à Plasmodium fasciparum chez l'homme : Analyses d'association familiale et d'interaction génétique de l'IL12B, de HS3ST3A1, de HS3ST3B1 et de l'HBB

Atkinson, Alexandre 24 June 2011 (has links)
Le paludisme tue un enfant toutes les 30 secondes en Afrique et 1 à 3 millions de personnes par an. Deux milliards d'individus sont exposés et on estime à 500 millions le nombre de cas cliniques survenant chaque année. Le paludisme étant une maladie multifactorielle, son évolution est soumise à l'influence d'effets environnementaux, à des variables telles que l'âge de l'individu, ainsi qu'à une combinaison de facteurs génétiques. De nombreux arguments sont en faveur d’un contrôle génétique de la résistance au paludisme, mais les gènes impliqués restent encore mal connus. Afin d’identifier de nouveaux gènes de résistance ou de susceptibilité au paludisme à Plasmodium falciparum, nous avons réalisé différentes études génétiques dans deux populations vivant en zone d’endémie palustre au Burkina Faso. Ainsi, des polymorphismes du gène IL12B situé dans une région chromosomique liée au paludisme (5q31-q33) ont été génotypés puis analysés. Nous n’avons pas décelé d’association allélique, mais ce travail a permis de confirmer l’existence d’une liaison génétique dans ce locus. Les données issues du génotypage du gène IL12B ainsi que celles d’études antérieures ont été utilisées pour évaluer les interactions génétiques entre la mutation provoquant l’hémoglobine C et 11 autres polymorphismes situés dans 5 gènes précédemment associés à la résistance au paludisme. En utilisant 3 phénotypes liés à l’infection palustre, nous avons ainsi pu observer 43 combinaisons multilocus significatives incluant des polymorphismes des gènes IL12B, IL4, TNF, NCR3 et LTA. Ces résultats d’interactions démontrent l’intérêt de développer ce type d’approches pour élucider le contrôle génétique de la résistance humaine au paludisme.Une approche par clonage positionnel, suivie d’une approche « gène candidat » nous a permis de mettre en évidence une liaison génétique entre la région 17p11-p13 et la parasitémie, puis une association allélique entre les gènes candidats HS3ST3A1 et HS3ST3B1 et la parasitémie. Ces gènes codent pour des isoenzymes transférant un groupement sulfate à des protéoglycanes afin de former des molécules d’héparane sulfates. L’implication potentielle de ces récepteurs, dans le contrôle génétique du paludisme suggère le rôle déterminant qu’ils pourraient jouer dans le déclenchement de l’infection, et fournit un nouveau terrain d’investigation pour l’identification de gènes contrôlant l’évolution de l’infection palustre. A notre connaissance, il s’agit de la première étude d’association entre un phénotype lié à l’infection palustre et des gènes impliqués dans la synthèse des héparane sulfates. / Malaria kills a child every 30 seconds in Africa and 1 to 3 million people per year. Two billion people are exposed and an estimated 500 million of clinical cases occur each year. Malaria being a multifactorial disease, its evolution is subject to the influence of environmental effects, variables such as age of the individual, and a combination of genetic factors. Many arguments are in favor of a genetic control of resistance to malaria, but the genes involved are still poorly understood. In order to identify new genes for resistance or susceptibility to Plasmodium falciparum, we performed genetic studies in two different populations living in malaria endemic area in Burkina Faso. Thus, polymorphisms of the IL12B gene located in a chromosomal region associated with malaria (5q31-q33) were genotyped and analyzed. We did not detect allelic association, but this work has confirmed the existence of a genetic linkage at this locus. Genotype data from IL12B gene and those of previous studies were used to evaluate interactions between the genetic mutation causing hemoglobin C and 11 other polymorphisms located in five genes previously associated with resistance to malaria. Using 3 phenotypes related to malaria infection, we were able to observe 43 significant multilocus combinations including IL12B gene polymorphisms, IL4, TNF, LTA and NCR3. These results demonstrate the interest to develop such approaches for elucidating the genetic control of human resistance to malaria. A positional cloning approach followed by a "candidate gene" approach allowed us to identify a genetic link between the region 17p11-p13 and parasitemia, and allelic association between candidate genes HS3ST3A1 and HS3ST3B1 and parasitemia. These genes encode isoenzymes transferring a sulfate group to proteoglycans to form molecules of heparan sulfates. The potential involvement of these receptors in the genetic control of malaria suggests the crucial role they might play in the onset of infection, and provides a new field of investigation for the identification of genes controlling the development of malaria infection. To our knowledge this is the first study of association between a phenotype associated with malaria infection and genes involved in the synthesis of heparan sulfates.
13

Identification et regroupement de QTL influençant la pression artérielle en modules épistatiques et analyse de deux gènes candidats chez la souche Dahl Salt-Sensitive

Chauvet, Cristina 05 1900 (has links)
No description available.
14

Towards higher predictability in enzyme engineering : investigation of protein epistasis in dynamic ß-lactamases and Cal-A lipase

Alejaldre Ripalda, Lorea 12 1900 (has links)
L'ingénierie enzymatique est un outil très avantageux dans l'industrie biotechnologique. Elle permet d'adapter les enzymes à une activité ou à une condition de réaction spécifique. En outre, elle peut permettre de déchiffrer les éléments clés qui ont facilité leur modification. Bien que l'ingénierie enzymatique soit largement pratiquée, elle comporte encore plusieurs goulets d'étranglement. Certains de ces goulets d'étranglement sont techniques, comme le développement de méthodologies pour la création de banques de mutations ciblées ou la réalisation de criblages à haut débit, et d'autres sont conceptuels, comme le déchiffrage des caractéristiques clés pertinentes d'une protéine cible pour la réussite d'un projet d'ingénierie. Parmi ces défis, l'épistasie intra-génique, ou la non-additivité des effets phénotypiques des mutations, est une caractéristique qui entrave grandement la prévisibilité. L'amélioration de l'ingénierie enzymatique nécessite une approche multidisciplinaire qui inclut une meilleure compréhension des relations structure-fonction-évolution. Cette thèse vise à contribuer à l'avancement de l'ingénierie enzymatique en étudiant deux systèmes modèles. Premièrement, des variantes dynamiques de la ß-lactamase TEM-1 ont été choisies pour étudier le lien entre la dynamique des protéines et l'évolution. La ß-lactamase TEM-1 a été largement caractérisée dans la littérature, ce qui s'est traduit par des connaissances approfondies sur son mécanisme de réaction, ses caractéristiques structurelles et son évolution. Les variantes de la ß-lactamase TEM-1 utilisées comme système modèle dans cette thèse ont été largement caractérisées, montrant une dynamique accrue à l'échelle temporelle pertinente pour la catalyse (µs à ms) mais maintenant la reconnaissance du substrat. Dans cette thèse, l'évolution in vitro de ces variantes dynamiques a été réalisée par des cycles itératifs de mutagenèse et de sélection aléatoires pour permettre une exploration impartiale du paysage de ‘fitness’. Nous démontrons que la présence de ces mouvements particuliers au début de l'évolution a permis d'accéder à des voies de mutations connues. De plus, des interactions épistatiques connues ont été introduites dans les variantes dynamiques. Leur caractérisation in silico et cinétique a révélé que les mouvements supplémentaires sur l'échelle de temps de la catalyse ont permis d'accéder à des conformations conduisant à une fonction améliorée, comme dans le TEM-1 natif. Dans l'ensemble, nous démontrons que l'évolution de la b-lactamase TEM-1 vers une nouvelle fonction est compatible avec divers mouvements à l'échelle de temps µs à ms. Il reste à savoir si cela peut se traduire par d'autres enzymes ayant un potentiel biotechnologique. Deuxièmement, la lipase Cal-A, pertinente sur le plan industriel, a été choisie pour identifier les caractéristiques qui pourraient faciliter son ingénierie. La lipase Cal-A présente des caractéristiques telles que la polyvalence du substrat et une grande stabilité thermique et réactivité qui la rendent attrayante pour la modification des triglycérides ou la synthèse de molécules pertinentes dans les industries alimentaire et pharmaceutique. Contrairement à TEM-1, la plupart des études d'évolution in vitro de la lipase Cal-A ont été réalisées dans un but industriel, avec une exploration limitée de l'espace de mutation. Par conséquent, les caractéristiques qui définissent la fonction de la lipase Cal-A restent insaisissables. Dans cette thèse, nous faisons état de la mutagenèse ciblée de la lipase Cal-A, confirmant l'existence d'une région clé pour la reconnaissance du substrat. Cela a été fait en combinant une nouvelle méthodologie de création de bibliothèque basée sur l'assemblage Golden-gate avec une visualisation structurelle basée sur des scripts pour identifier et cartographier les mutations sélectionnées dans la structure 3D. La caractérisation et la déconvolution de deux des plus aptes ont révélé l'existence d'une épistasie dans l'évolution de la lipase Cal-A vers une nouvelle fonction. Dans l'ensemble, nous démontrons que l’identification d'une variété de propriétés suite à la mutagenèse ciblée peut grandement améliorer la connaissance d'une enzyme. Cette information peut être appliquée pour améliorer l'efficacité de l'ingénierie dirigée. / Enzyme engineering is a tool with great utility in the biotechnological industry. It allows to tailor enzymes to a specific activity or reaction condition. In addition, it can allow to decipher key elements that facilitated their modification. While enzyme engineering is extensively practised, it still entails several bottlenecks. Some of these bottlenecks are technical such as the development of methodologies for creating targeted mutational libraries or performing high-throughput screening and some are conceptual such as deciphering the key relevant features in a target protein for a successful engineering project. Among these challenges, intragenic epistasis, or the non-additivity of the phenotypic effects of mutations, is a feature that greatly hinders predictability. Improving enzyme engineering needs a multidisciplinary approach that includes gaining a better understanding of structure-function-evolution relations. This thesis seeks to contribute in the advancement of enzyme engineering by investigating two model systems. First, dynamic variants of TEM-1 ß-lactamase were chosen to investigate the link between protein dynamics and evolution. TEM-1 ß-lactamase has been extensively characterized in the literature, which has translated into extensive knowledge on its reaction mechanism, structural features and evolution. The variants of TEM-1 ß-lactamase used as model system in this thesis had been extensively characterized, showing increased dynamics at the timescale relevant to catalysis (µs to ms) but maintaining substrate recognition. In this thesis, in vitro evolution of these dynamic variants was done by iterative rounds of random mutagenesis and selection to allow an unbiased exploration of the fitness landscape. We demonstrate that the presence of these particular motions at the outset of evolution allowed access to known mutational pathways. In addition, known epistatic interactions were introduced in the dynamic variants. Their in silico and kinetic characterization revealed that the additional motions on the timescale of catalysis allowed access to conformations leading to enhanced function, as in native TEM-1. Overall, we demonstrate that the evolution of TEM-1 b-lactamase toward new function is compatible with diverse motions at the µs to ms timescale. Whether this can be translated to other enzymes with biotechnological potential remains to be explored. Secondly, the industrially relevant Cal-A lipase was chosen to identify features that could facilitate its engineering. Cal-A lipase presents characteristics such as substrate versatility and high thermal stability and reactivity that make it attractive for modification of triglycerides or synthesis of relevant molecules in the food and pharmaceutical industries. Contrary to TEM-1, most in vitro evolution studies of Cal-A lipase have been done towards an industrially-specified goal, with limited exploration of mutational space. As a result, features that define function in Cal-A lipase remain elusive. In this thesis, we report on focused mutagenesis of Cal-A lipase, confirming the existence of a key region for substrate recognition. This was done by combining a novel library creation methodology based on Golden-gate assembly with script-based structural visualization to identify and map the selected mutations into the 3D structure. The characterization and deconvolution of two of the fittest revealed the existence of epistasis in the evolution of Cal-A lipase towards new function. Overall, we demonstrate that mapping a variety of properties following mutagenesis targeted to specific regions can greatly improve knowledge of an enzyme that can be applied to improve the efficiency of directed engineering.

Page generated in 0.0541 seconds