• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pulsed Laser Ablation in Liquid : towards the comprehension of the growth processes / Vers la compréhension des processus de croissance en ablation laser en milieu liquide

Lam, Julien 24 September 2015 (has links)
Lorsqu'une impulsion laser est focalisée sur une cible solide immergée dans un liquide, de la matière est vaporisée. La nucléation et la croissance ont lieu dans le liquide et des nanoparticules sont ainsi synthétisées. La méthode est très polyvalente puisqu'une grande variété de matériaux peut être générée. De plus, les nanoparticules sont directement stabilisées dans le solvant. L'ajout d'agent complexant n'est pas nécessaire mais peut tout de même permettre de mieux contrôler la taille des nanoparticules. Cependant, de nombreux processus sont mis en jeu durant la synthèse et l'objectif de ce travail doctoral est de développer la compréhension de ces éléments. Dans la mesure où l'ablation laser déploie une multitude d'´échelle de temps, il a fallu employer différentes méthodes pour élucider ces mécanismes. Pour commencer, je définirai un état de l'art de l'utilisation de l'ablation laser en milieu liquide et nos résultats concernant la synthèse d'aluminium oxyde dopé chrome. Par la suite, je présenterai la spectroscopie des plasmas et les questions sous-jacentes à la notion d'´équilibre dans un plasma moléculaire. Ensuite, je décrirai notre approche atomistique de la nucléation basée sur les techniques de chimie quantique. Enfin, je montrerai l'apport de l'utilisation des méthodes d'ombrographie pour mieux comprendre la thermodynamique du système au temps plus long. Notre étude démontre que la bulle formée suite à l'ablation laser est constituée essentiellement de molécule du solvant dont la quantité n'évolue quasiment pas au cours du temps de vie de la bulle / When a pulsed-laser is focused into a solid target immersed in water, the material is evaporated. Nucleation and growth occur in the liquid and nanoparticles are synthesized. The method can be considered as versatile because one can try to synthesize any kinds of materials. Also, the nanoparticles are directly stabilized by the solvant so there is no need of complexing agents. The nanoparticles are described as ligand-free. However, various processes can occur during the synthesis and the aim of my work is to understand these different components. Since the laser ablation in liquid displays a wide range of timescales, we used numerous methods to address this problem. First, I will present the use of plasma spectroscopy and the questions it raises towards local thermodynamic equilibrium. Then, I will describe our microscopic approach of nucleation based on quantum chemistry techniques. Finally, I will illustrate the advantages of shadowgraphic measurements to reach an hydrodynamic understanding of the system
2

Caractérisation d'un plasma d'aluminium créé par interaction laser-matière à bas flux sous environnement atmosphérique

Barthélemy, Olivier January 2004 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
3

Détection de métaux lourds dans les sols par spectroscopie d'émission sur plasma induit par laser (LIBS)

Sirven, Jean-Baptiste 18 September 2006 (has links) (PDF)
Dans les domaines de l'analyse, du contrôle et de la mesure physique, le laser constitue un outil métrologique particulièrement puissant et polyvalent, capable d'apporter des réponses concrètes à des problématiques variées, y compris d'ordre sociétal. Parmi ces dernières, la contamination des sites et des sols par les métaux lourds est un enjeu de santé publique important qui requiert de disposer de moyens de mesure adaptés aux réglementations existantes et suffisamment souples d'utilisation. Technique rapide et ne nécessitant pas de préparation de l'échantillon, la spectroscopie sur plasma induit par laser (LIBS) présente des avantages très intéressants pour réaliser des mesures sur site de la teneur en métaux lourds à l'échelle de la dizaine de ppm; la conception d'un appareil portable à moyen terme est envisageable.<br />Dans cette thèse nous montrons d'abord que le régime femtoseconde ne présente pas d'avantages par rapport au régime nanoseconde standard pour notre problématique. Ensuite nous mettons en œuvre un traitement avancé des spectres LIBS par des méthodes chimiométriques dont les performances améliorent sensiblement les résultats des analyses qualitatives et quantitatives d'échantillons de sols.
4

Étude critique de la densité électronique et des températures (excitation et ionisation) d'un plasma d'aluminium induit par laser

Giroux, Karl 12 1900 (has links)
La caractérisation de matériaux par spectroscopie optique d’émission d’un plasma induit par laser (LIPS) suscite un intérêt qui ne va que s’amplifiant, et dont les applications se multiplient. L’objectif de ce mémoire est de vérifier l’influence du choix des raies spectrales sur certaines mesures du plasma, soit la densité électronique et la température d’excitation des atomes neutres et ionisés une fois, ainsi que la température d’ionisation. Nos mesures sont intégrées spatialement et résolues temporellement, ce qui est typique des conditions opératoires du LIPS, et nous avons utilisé pour nos travaux des cibles binaires d’aluminium contenant des éléments à l’état de trace (Al-Fe et Al-Mg). Premièrement, nous avons mesuré la densité électronique à l’aide de l’élargissement Stark de raies de plusieurs espèces (Al II, Fe II, Mg II, Fe I, Mg I, Halpha). Nous avons observé que les densités absolues avaient un comportement temporel différent en fonction de l’espèce. Les raies ioniques donnent des densités électroniques systématiquement plus élevées (jusqu’à 50 % à 200 ns après l’allumage du plasma), et décroissent plus rapidement que les densités issues des raies neutres. Par ailleurs, les densités obtenues par les éléments traces Fe et Mg sont moindres que les densités obtenues par l’observation de la raie communément utilisée Al II à 281,618 nm. Nous avons parallèlement étudié la densité électronique déterminée à l’aide de la raie de l’hydrogène Halpha, et la densité électronique ainsi obtenue a un comportement temporel similaire à celle obtenue par la raie Al II à 281,618 nm. Les deux espèces partagent probablement la même distribution spatiale à l’intérieur du plasma. Finalement, nous avons mesuré la température d’excitation du fer (neutre et ionisé, à l’état de trace dans nos cibles), ainsi que la température d’ionisation, à l’aide de diagrammes de Boltzmann et de Saha-Boltzmann, respectivement. À l’instar de travaux antérieurs (Barthélémy et al., 2005), il nous est apparu que les différentes températures convergeaient vers une température unique (considérant nos incertitudes) après 2-3 microsecondes. Les différentes températures mesurées de 0 à 2 microsecondes ne se recoupent pas, ce qui pourrait s’expliquer soit par un écart à l’équilibre thermodynamique local, soit en considérant un plasma inhomogène où la distribution des éléments dans la plume n’est pas similaire d’un élément à l’autre, les espèces énergétiques se retrouvant au cœur du plasma, plus chaud, alors que les espèces de moindre énergie se retrouvant principalement en périphérie. / Interest in the characterization of materials by laser induced plasma spectroscopy (LIPS) is growing with new applications emerging at an ever increasing pace. The purpose of this thesis is to verify the influence of the selection of spectral lines according to measured parameters of the plasma: electron density and excitation (neutral and singly ionized atoms) and ionization temperatures. Our measurements are conducted under typical operating conditions of LIPS: spatially integrated and temporally resolved. We used two binary aluminum targets containing trace elements (Al-Fe and Al-Mg). First, we measured the electron density using Stark broadening of lines from several species (Al II, Fe II, Mg II, Fe I, Mg I, Hα). We observed that the absolute density had a different temporal behavior depending on the species. The ionic lines giving electron densities systematically higher (up to 50 % at 200 ns after plasma ignition), and decreasing faster than densities derived from neutral lines. Densities obtained from trace elements Mg and Fe are lower than densities obtained from the commonly used line Al II at 281.618 nm. In parallel, we studied the space-integrated electron density evolution found from hydrogen Hα line and observed that it has a temporal behavior similar to the density obtained by the Al II line at 281.618 nm. Thus the two species probably share the same spatial distribution within the plasma. Finally, we measured the excitation temperature of iron (neutral and ionized, in trace amount in our targets), and the ionization temperature, using Boltzmann and Saha-Boltzmann plots, respectively. As previously described by Barthélémy et al. (2005), it appears that the different temperatures converge to a single value (considering error bars) after 2-3 microseconds. The different temperatures measured from 0 to 2 microseconds do not overlap, which could be explained by a departure from local thermodynamic equilibrium (Barthélémy et al., 2005), or by considering an inhomogeneous plasma where spatial distribution differs from one species to another, so that high energy species are found from within the plasma’s centre, which is hotter, while the lower energy species are found mainly in the periphery.
5

Étude critique de la densité électronique et des températures (excitation et ionisation) d'un plasma d'aluminium induit par laser

Giroux, Karl 12 1900 (has links)
La caractérisation de matériaux par spectroscopie optique d’émission d’un plasma induit par laser (LIPS) suscite un intérêt qui ne va que s’amplifiant, et dont les applications se multiplient. L’objectif de ce mémoire est de vérifier l’influence du choix des raies spectrales sur certaines mesures du plasma, soit la densité électronique et la température d’excitation des atomes neutres et ionisés une fois, ainsi que la température d’ionisation. Nos mesures sont intégrées spatialement et résolues temporellement, ce qui est typique des conditions opératoires du LIPS, et nous avons utilisé pour nos travaux des cibles binaires d’aluminium contenant des éléments à l’état de trace (Al-Fe et Al-Mg). Premièrement, nous avons mesuré la densité électronique à l’aide de l’élargissement Stark de raies de plusieurs espèces (Al II, Fe II, Mg II, Fe I, Mg I, Halpha). Nous avons observé que les densités absolues avaient un comportement temporel différent en fonction de l’espèce. Les raies ioniques donnent des densités électroniques systématiquement plus élevées (jusqu’à 50 % à 200 ns après l’allumage du plasma), et décroissent plus rapidement que les densités issues des raies neutres. Par ailleurs, les densités obtenues par les éléments traces Fe et Mg sont moindres que les densités obtenues par l’observation de la raie communément utilisée Al II à 281,618 nm. Nous avons parallèlement étudié la densité électronique déterminée à l’aide de la raie de l’hydrogène Halpha, et la densité électronique ainsi obtenue a un comportement temporel similaire à celle obtenue par la raie Al II à 281,618 nm. Les deux espèces partagent probablement la même distribution spatiale à l’intérieur du plasma. Finalement, nous avons mesuré la température d’excitation du fer (neutre et ionisé, à l’état de trace dans nos cibles), ainsi que la température d’ionisation, à l’aide de diagrammes de Boltzmann et de Saha-Boltzmann, respectivement. À l’instar de travaux antérieurs (Barthélémy et al., 2005), il nous est apparu que les différentes températures convergeaient vers une température unique (considérant nos incertitudes) après 2-3 microsecondes. Les différentes températures mesurées de 0 à 2 microsecondes ne se recoupent pas, ce qui pourrait s’expliquer soit par un écart à l’équilibre thermodynamique local, soit en considérant un plasma inhomogène où la distribution des éléments dans la plume n’est pas similaire d’un élément à l’autre, les espèces énergétiques se retrouvant au cœur du plasma, plus chaud, alors que les espèces de moindre énergie se retrouvant principalement en périphérie. / Interest in the characterization of materials by laser induced plasma spectroscopy (LIPS) is growing with new applications emerging at an ever increasing pace. The purpose of this thesis is to verify the influence of the selection of spectral lines according to measured parameters of the plasma: electron density and excitation (neutral and singly ionized atoms) and ionization temperatures. Our measurements are conducted under typical operating conditions of LIPS: spatially integrated and temporally resolved. We used two binary aluminum targets containing trace elements (Al-Fe and Al-Mg). First, we measured the electron density using Stark broadening of lines from several species (Al II, Fe II, Mg II, Fe I, Mg I, Hα). We observed that the absolute density had a different temporal behavior depending on the species. The ionic lines giving electron densities systematically higher (up to 50 % at 200 ns after plasma ignition), and decreasing faster than densities derived from neutral lines. Densities obtained from trace elements Mg and Fe are lower than densities obtained from the commonly used line Al II at 281.618 nm. In parallel, we studied the space-integrated electron density evolution found from hydrogen Hα line and observed that it has a temporal behavior similar to the density obtained by the Al II line at 281.618 nm. Thus the two species probably share the same spatial distribution within the plasma. Finally, we measured the excitation temperature of iron (neutral and ionized, in trace amount in our targets), and the ionization temperature, using Boltzmann and Saha-Boltzmann plots, respectively. As previously described by Barthélémy et al. (2005), it appears that the different temperatures converge to a single value (considering error bars) after 2-3 microseconds. The different temperatures measured from 0 to 2 microseconds do not overlap, which could be explained by a departure from local thermodynamic equilibrium (Barthélémy et al., 2005), or by considering an inhomogeneous plasma where spatial distribution differs from one species to another, so that high energy species are found from within the plasma’s centre, which is hotter, while the lower energy species are found mainly in the periphery.

Page generated in 0.0954 seconds