• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Πολυμερικές γέλες ή γαλακτώματα για επιβραδυνόμενη απελευθέρωση φαρμάκων: μελέτη της επίδρασης της ενσωμάτωσης λιποσωμικών μορφών φαρμάκων στον ρυθμό απελευθέρωσης μορίων και στις ρεολογικές τους ιδιότητες

Φωτοπούλου, Στυλιανή 27 May 2008 (has links)
Ο σκοπός της παρούσης εργασίας είναι να εξετάσουμε την κινητική απελευθέρωσης υδρόφιλων και λιπόφιλων μορίων που εγκλωβίζονται σε λιποσώματα, όταν τα λιποσώματα διασπείρονται σε συστήματα φορέων- υδρογελών. Στην παρούσα εργασία μελετάται η απελευθέρωση της υδατοδιαλυτής ουσίας καλσεΐνης και της λιποδιαλυτής γκριζεοφλουβίνη τόσο από σταθερά λιποσώματα (DSPC:Chol) όσο και από ασταθή (PC) διεσπαρμένα σε φορείς υδρογελών. / Release of calcein and griseofulvin (GRF) from control (gels in which solutes are dissolved in) and liposomal gels was studied using agarose-assisted immobilization as a technique to separate gels from drug-receptor compartments.Results show that calcein release from liposomal gels is slower compared to control gels, and can be further retarded by using rigid-membrane liposomes (faster release from PC-liposome compared to DSPC/Chol-liposome gels).Additionally, calcein release is not affected by the lipid amount loaded (in the range from 2 to 8 mg/ml), therefore solute loading can be controlled according to needs. Oppositely, GRF release from liposomal gels is determined by drug loading. At high drug loading levels (compared to GRF aqueous solubility), GRF is released with constant rate from liposomal gels irrespective of liposome type (PC or DSPC/Chol). Thereby, for amphiphilic/lipophilic drugs, drug properties (solubility, log P) determine the system behavior. Calcein and GRF release from control carbopol gels is faster compared to HEC and mixture gels. The same is true for calcein in liposomal gels. Carbopol gel rheological properties were found to be significantly different (compared to the other gels), implying that these characteristics are important for drug diffusion from gels.
2

Φυσικοχημική μελέτη της σταθερότητας γαλακτωμάτων πρωτεϊνών γάλακτος με την τεχνική της μονοφασικής χρωματογραφίας πεδίου

Κέντα, Στέλλα 31 May 2012 (has links)
Τα γαλακτώματα είναι η κολλοειδής διασπορά δύο μη αναμίξιμων υγρών, τα οποία είναι κατά κανόνα θερμοδυναμικά ασταθή συστήματα. Οι πρωτεΐνες γάλακτος είναι γνωστές επιφανειοδραστικές ουσίες και ως εκ τούτου χρησιμοποιούνται ως συστατικά σε ένα ευρύ φάσμα γαλακτωμάτων τροφίμων. Σκοπός της παρούσας εργασίας είναι η εύρεση των κατάλληλων συνθηκών για την παρασκευή σταθερών γαλακτωμάτων πρωτεϊνών γάλακτος. Το μέγεθος των λιποσφαιριδίων διαδραματίζει τον κυρίαρχο ρόλο στη σταθερότητα του γαλακτώματος πρωτεϊνών γάλακτος. Η μέτρηση του μεγέθους των λιποσφαιριδίων έγινε με την τεχνική της Μονοφασικής Χρωματογραφίας Φυγοκεντρικού Πεδίου. Πιο συγκεκριμένα, μελετήθηκε η επίδραση της συγκέντρωσης (0,5 έως 3,0% w/w) και του τύπου (πρωτεΐνες ορού και καζεΐνες) των πρωτεϊνών γάλακτος, καθώς και των συνθηκών ομογενοποίησης (πίεση ομογενοποίησης 200 έως 600bar) του γαλακτώματος. Επίσης, μελετήθηκε η επίδραση της συγκέντρωσης γαλακτωματοποιητών εμπορίου (Tween 80) στη σταθερότητα των γαλακτωμάτων. Επιπρόσθετα, έγινε κινητική μελέτη συσσωμάτωσης των γαλακτωμάτων από πρωτεΐνες γάλακτος και στη συνέχεια μελετήθηκαν πιο συγκεκριμένα τα γαλακτώματα καζεϊνών, με σκοπό τον προσδιορισμό της σταθεράς ταχύτητας της συσσωμάτωσης των λιποσφαιριδίων σε θερμοκρασίες 30,5 και 80 ᵒC. Αυξάνοντας την πίεση ομογενοποίησης του γαλακτώματος παρατηρήθηκε μείωση της διαμέτρου των λιποσφαιριδίων. Τα γαλακτώματα που ομογενοποιήθηκαν σε πίεση μεγαλύτερη των 500 bar παρουσίασαν ευρύτερη κατανομή μεγέθους, λόγω της υψηλής θερμοκρασίας που αναπτύχθηκε κατά τη διάρκεια της ομογενοποίησης. Η πρωτεϊνική συγκέντρωση έχει σημαντικές επιπτώσεις στις φυσικοχημικές ιδιότητες του γαλακτώματος (λάδι σε νερό). Αυξανόμενης της συγκέντρωσης των πρωτεϊνών γάλακτος, μειώθηκε αισθητά η διάμετρος των λιποσφαιριδίων του γαλακτώματος και σε χαμηλές συγκεντρώσεις πρωτεϊνών (<1%κ.β.) παρατηρήθηκε σχηματισμός συσσωματωμάτων. Παρατηρήθηκε μικρή μεταβολή της διαμέτρου των λιποσφαιριδίων των γαλακτωμάτων που σχηματίστηκαν με διαφορετικές αναλογίες κλασμάτων πρωτεϊνών ορού/καζεϊνών. Οι δύο τύποι των πρωτεϊνών του γάλακτος παρουσίασαν πολύ καλή γαλακτωματοποιητική δράση και τα γαλακτώματα που σχηματίστηκαν ήταν πολύ σταθερά. Παρατηρήθηκε ότι, αυξάνοντας τη συγκέντρωση των πρωτεϊνών του ορού γάλακτος και ταυτόχρονα μειώνοντας τη συγκέντρωση των καζεϊνών, μειώθηκε η διάμετρος των λιποσφαιριδίων του γαλακτώματος. Η σταθερότητα των γαλακτωμάτων σε σχέση με τον χρόνο οφείλεται στη δομή των μορίων των πρωτεϊνών που σταθεροποιούν τα γαλακτώματα αυτά. Κατά συνέπεια, τα μόρια των καζεϊνών και των πρωτεϊνών ορού, προσδίδουν διαφορετικές ιδιότητες στα γαλακτώματα λόγω της διαφορετικής δομής τους. Τα γαλακτώματα που σχηματίστηκαν με καζεΐνες ήταν πιο ανθεκτικά στην θερμοκρασία και παρουσίασαν μακροπρόθεσμη σταθερότητα σε σχέση με τα γαλακτώματα που περιείχαν μόνο πρωτεΐνες ορού. Η υπολογισθείσα φαινόμενη σταθερά συσσωμάτωσης των γαλακτωμάτων καζεϊνών στη θερμοκρασία των 30,5 ᵒC βρέθηκε να είναι σχεδόν 14 φορές μικρότερη από αυτή των γαλακτωμάτων που συσσωματώθηκαν στη θερμοκρασία 80,0 ᵒC. Επομένως, η διαδικασία της συσσωμάτωσης συμβαίνει ταχύτερα σε πιο υψηλές θερμοκρασίες θέρμανσης για τα γαλακτώματα καζεϊνών, ωστόσο έφτασαν στο μέγιστο βαθμό συσσωμάτωσης σε ίδιο χρονικό διάστημα. / In the food industry, when referring to an oil-in-water emulsion, is usually described in which oil is dispersed in the form of small spherical droplets in the continuous phase. Food emulsions are thermodynamically unstable. Nevertheless, food scientists are able to slow down the above physicochemical mechanisms responsible for emulsion instability and thus, extend the self-life of such products by a relatively simple and well studied process, termed emulsification. Surface active materials termed emulsifiers, such as proteins help produce small droplets and contribute to the stability of the emulsion. Emulsifiers decrease the interfacial tension between the oil and water phases through rapid adsorption to the surface of the newly formed oil droplets. Milk proteins (caseins and whey proteins) are well known surfactants and hence are used as ingredients in a wide range of food emulsions. One of the important parameters affecting the quality, appearance and taste of the final food products is the particle size of the ingredients included. For example, particle size of fat globules plays predominant role in the stability of the milk-protein stabilized emulsion. Milk protein-stabilized model emulsions were formed using high-pressure homogenization and the effect of homogenization pressure during emulsification, protein concentration, type of milk proteins (casein and whey proteins) and the effect of the surfactant Tween-80 were studied. The kinetic of milk protein emulsions aggregation was also studied and moreover, the apparent rate constant was calculated for the aggregation of caseinate stabilized emulsions in different temperatures (30,5 and 80,0 ᵒC). Sedimentation field flow fractionation was employed for the size characterization of oil droplets and the results obtained are consistent with those of other studies. Increasing protein content results in significant reduction in emulsion particle size for the concentration range (0.5 – 3.0 % w/w) employed in this study. Low protein content (<1%) may be correlated with bridging flocculation leading to increased particle size, as indicated by optical microscopy. Similarly, increasing pressure during the homogenization process results in decreasing significantly the particle size of the oil-in-water emulsions, for the pressure range (200 – 600 bar) utilized in this study. Increased heating associated with high levels of pressure during the homogenization process, can result in changes in the oil or protein structure, which in turn may have an impact on the physicochemical properties of the oil-in-water emulsions on a long-term basis. The two types of milk proteins appeared to be both good emulsifiers and the formed emulsions were very stable. Increasing whey protein content and together decreasing the casein content, results in small reduction in emulsion particle size. Different proteins depending on their composition and structure posses’ properties, which render them, better emulsifiers than others. Caseinate stabilized emulsions were more resistant in heating time than whey stabilized emulsions. The calculated apparent rate constant for the aggregation of caseinate stabilized emulsions at the temperature of 30,5 ᵒC was found to be fourteen times smaller than the one at the temperature of 80,0 ᵒC. Therefore, the aggregation process is faster in high temperatures for caseinate stabilized emulsions, although the maximum of aggregation point is attained at the same time in both temperatures.

Page generated in 0.0191 seconds