• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Η μέθοδος της αντίστροφης σκέδασης στις μη γραμμικές εξισώσεις εξέλιξης

Κωνσταντίνου-Ρίζος, Σωτήρης 25 May 2009 (has links)
Στην παρούσα εργασία ασχολούμαστε με μεθόδους κατασκευής λύσεων για μη γραμμικές μερικές διαφορικές εξώσεις (ΜΔΕ) εξέλιξης, δηλαδή εξισώσεις που περιγράφουν μια φυσική κατάσταση που εξελίσσεται χρονικά, και διακρίνονται σε γραμμικές και μη γραμμικές. Για την επίλυση των γραμμικών ΜΔΕ εξέλιξης υπάρχει η μέθοδος του μετασχηματισμού Fourier. Για τις μη γραμμικές ΜΔΕ εξέλιξης δεν υπάρχει κάποια γενική μέθοδος κατασκευής λύσεων. Πολλές απ’ αυτές, έχουν την ιδιότητα να επιδέχονται ειδικές λύσεις που ονομάζονται σολιτόνια. Βασικό χαρακτηριστικό των σολιτονίων είναι η «ελαστική» αλληλεπίδρασή τους. Πρώτοι οι Zabusky και Kruskal ανακάλυψαν το 1965 ότι η εξίσωση των Korteweg και De Vries (KdV) επιδέχεται σολιτονική λύση. Σχεδόν αμέσως οι Gardner, Greene, Kruskal και Miura [1967,1974] βρήκαν μια μέθοδο κατασκευής σολιτονικής λύσης για την εξίσωση KdV. Η μέθοδος βασίζεται στην λογική της σκέδασης και της αντίστροφης σκέδασης. Η μέθοδος της αντίστροφης σκέδασης, λειτουργεί ανάλογα με αυτή του μετασχηματισμού Fourier για τις γραμμικές, και αποτελεί το κύριο μέρος αυτής της εργασίας. Ειδικότερα: Στο πρώτο κεφάλαιο, παρουσιάζουμε παραδείγματα γραμμικών εξισώσεων εξέλιξης σε μία χωρική διάσταση, καθώς και λύσεις αυτών. Στη συνέχεια, αναζητούμε σολιτονικές λύσεις για τις μη γραμμικές ΜΔΕ εξέλιξης και κλείνουμε με ένα παράδειγμα μη γραμμικής ΜΔΕ εξέλιξης στις δύο χωρικές διαστάσεις. Στο δεύτερο κεφάλαιο, δείχνουμε πώς μπορούμε να κατασκευάσουμε λύσεις προβλημάτων αρχικών τιμών (ΠΑΤ) για γραμμικές εξισώσεις εξέλιξης, με χρήση του μετασχηματισμού Fourier. Στη συνέχεια, γίνεται εφαρμογή της μεθόδου της αντίστροφης σκέδασης στην κατασκευή λύσεων για μη γραμμικές ΜΔΕ εξέλιξης. Στο τρίτο κεφάλαιο, γίνεται εφαρμογή της μεθόδου της αντίστροφης σκέδασης στο ΠΑΤ για την εξίσωση KdV. Για κατάλληλη επιλογή της αρχικής συνθήκης διαπιστώνουμε ότι η KdV επιδέχεται σολιτονικές λύσεις. Συγκεκριμένα, επιλέγουμε αρχικές συνθήκες που εξελίσσονται χρονικά σε σολιτονική, 2-σολιτονική και 3-σολιτονική λύση. Τέλος, παρουσιάζουμε ένα πρόγραμμα σε περιβάλλον Mathematica που κατασκευάζει πολυσολιτονική λύση για την εξίσωση KdV. Το τέταρτο κεφάλαιο αφιερώνεται στα ζεύγη Lax, τα οποία είναι ζεύγη γραμμικών εξισώσεων εξέλιξης. Αυτό που τα χαρακτηρίζει είναι ότι, η συνθήκη συμβατότητας αυτών είναι η εξίσωση εξέλιξης που μας ενδιαφέρει. Σε αυτό βασίζεται και η μέθοδος των Ablowitz, Kaup, Newell και Segur (AKNS), για την κατασκευή λύσεων μη γραμμικών εξισώσεων εξέλιξης. Εφαρμόζουμε την μέθοδο AKNS στην εξίσωση KdV για να κατασκευάσουμε σολιτονικές λύσεις. Στο πέμπτο και τελευταίο κεφάλαιο, ασχολούμαστε με την αναδιατύπωση ενός ΠΑΤ ως πρόβλημα Riemann-Hilbert. Επιπλέον, δείχνουμε πώς συνδέεται ένα πρόβλημα αντίστροφης σκέδασης με ένα πρόβλημα Riemann-Hilbert, θεωρώντας την εξίσωση KdV. Τέλος, αναφερόμαστε στην σύνδεση προβλημάτων αρχικών-συνοριακών τιμών με το πρόβλημα Riemann-Hilbert και κάνουμε μια επισκόπιση στη σύγχρονη βιβλιογραφία και παρουσιάζουμε πρόσφατα αποτελέσματα σε αυτή την κατεύθυνση. / In this master thesis our subject is to construct solutions for nolinear partial differential evolution equations (PDEs), which are equations that describe a physical model that evolves in time, and can be either linear or nonlinear. For solving linear PDEs we use the Fourier Transform (FT), while for nonlinear PDEs a general method for constructing solutions does not exist. Many of them admit special kind of solutions that are called solitons. A basic property of solitons, is that they interact in an elastic way. In 1965, Zabusky and Kruskal were the first to discover that the Korteweg & de Vries (KdV) equation admits a soliton solution. Straightforward Gardner, Greene, Kruskal and Miura [1967, 1974] found a method to contruct a soliton solution for the KdV equation. This method is based on the Inverse Scattering Transform (IST). The IST is the nonlinear FT- analogue, and a big part of our work is devoted to this method. Particularly: In the first chapter, we introduce some examples of linear evolution equations in one spatial dimension, and their solutions. We then construct soliton solutions for nonlinear evolution PDEs and an example in 2 spatial dimensions is considered. The second chapter deals with Initial Value Problems (IVP) and their solution construction via the FT. We also apply the IST to construct solutions for nonlinear evolution PDEs. In the third chapter, we consider KdV as an example of an evolution equation that is integrable under the IST, by the knowledge of the initial distribution of the solution. For a specific choise of the initial condition we establish that KdV equation admits soliton solutions. Especially, we choose initial conditions that evolve in time to 1-soliton, 2-soliton and multi-soliton solution. Finally, we present a program with Mathematica that constructs multi-soliton solution for the KdV. The lax pair for a nonlinear evolution equation is introduced in the fourth chapter. Lax pairs are pairs of linear PDEs and, often, their compatibility condition is the nonlinear equation we study. The method produced by Ablowitz, Kaup, Newell and Segur (AKNS), for constructing solutions for nonlinear evolution equations, is based on Lax pairs. We apply this method to KdV. The last chapter refers to Riemann Hilbert (RH) problems and their connection with the Inverse Scattering problem. We use KdV to show this connection. Finally, we mention how an Initial and Boundary Value Problem (IBVP) and an RH problem are connected. A quick review of recent results is considered.
2

Μη γραμμικές εξισώσεις εξέλιξης : η μέθοδος ένδυσης

Ρουστέμογλου, Ήλια 28 September 2009 (has links)
Όπως μπορεί κανείς να καταλάβει και από τον τίτλο, η εργασία έχει να κάνει με μία μέθοδο επίλυσης μη γραμμικών μερικών διαφορικών εξισώσεων και, συγκεκριμένα, μιας οικογένειας τέτοιων εξισώσεων, που ονομάζονται εξισώσεις εξέλιξης. Πολλές από αυτές, μάλιστα, επιδέχονται ειδικού τύπου λύσεις που είναι γνωστές με το όνομα σολιτόνια (solitons). Αρχικά, μας απασχολεί η έννοια της ολοκληρωσιμότητας, για την οποία όμως δεν υπάρχει κάποιος σαφής ορισμός. Παρ' όλα αυτά, μπορούμε να πούμε ότι μία διαφορική εξίσωση καλείται ολοκληρώσιμη όταν μπορεί να γραμμικοποιηθεί άμεσα ή έμμεσα. Ο όρος έμμεση γραμμικοποίηση συνδέεται με την έννοια της ύπαρξης ζευγαριού Lax, την οποία εξηγούμε χρησιμοποιώντας εργαλεία της θεωρίας τελεστών. Για τις μη γραμμικές εξισώσεις εξέλιξης, έχει αναπτυχθεί πλέον πλήθος μεθόδων ανάλυσης, στα πλαίσια της ολοκληρωσιμότητας, και υπάρχει πλούσια σχετική βιβλιογραφία. Αναφέρουμε συνοπτικά μερικές από αυτές χρησιμοποιώντας κάποια παραδείγματα, ενώ επικεντρωνόμαστε στην αναλυτική περιγραφή μιας μεθόδου που πρώτοι παρουσίασαν οι Zakharov και Shabat το 1974. Η μέθοδος αυτή, η οποία αναπτύχθηκε λίγο μετά τη μέθοδο της αντίστροφης σκέδασης, ονομάζεται μέθοδος ένδυσης (dressing method) ή σχήμα των ZS. Για την παρουσίασή της, χρησιμοποιούμε μόνο τελεστές χωρίς να αναφερόμαστε πουθενά στα δεδομένα σκέδασης του προβλήματος. Εισάγουμε, με τη βοήθεια διαφορικών και ολοκληρωτικών τελεστών, το γυμνό (undressed) και το ντυμένο (dressed) τελεστή και, έπειτα, δείχνουμε πώς από αυτούς προκύπτει η γενικευμένη εξίσωση Lax. Παραθέτουμε κάποια παραδείγματα εξισώσεων στις οποίες εφαρμόζεται η μέθοδος και, τέλος, κατασκευάζουμε σολιτονικές λύσεις για τη μη γραμμική εξίσωση του Schrödinger, με τη βοήθεια της ολοκληρωτικής εξίσωσης των Gelfand-Levitan-Marchenko. Πέρα από την περιγραφή της μεθόδου ένδυσης στην αρχική της μορφή, βλέπουμε και πώς αυτή εμφανίζεται στη σύγχρονη βιβλιογραφία. Με την πάροδο του χρόνου εξελίχθηκε αρκετά και συνδέθηκε με προβλήματα της μιγαδικής ανάλυσης και, πιο συγκεκριμένα, με τα προβλήματα Riemann-Hilbert (RH) και dbar που, με τη σειρά τους, προκύπτουν σε πολλές εφαρμογές των μαθηματικών. Από ένα μεγάλο πλήθος πρόσφατα δημοσιευμένων άρθρων, παρουσιάζουμε αναλυτικότερα ένα, αυτό των Bogdanov και Zakharov (2002), που αφορά στην εξίσωση Boussinesq. Περιγράφουμε μια ειδικότερη μορφή της μεθόδου ένδυσης, η οποία ονομάζεται ένδυση dbar (dbar-dressing) και αναλύουμε, μέσω αυτής, τις σολιτονικές λύσεις και το συνεχές φάσμα της εξίσωσης Boussinesq. Οι σολιτονικές λύσεις της εξίσωσης παρουσιάζουν μία πολύ ιδιαίτερη συμπεριφορά, η οποία έρχεται σε αντίθεση με τον ευσταθή χαρακτήρα των σολιτονίων. / As one can understand from the title, our main subject is a method for solving nonlinear partial differential equations and in particular a family of such equations, called evolution equations. Many of them admit a special kind of solutions, known as solitons. One of our basic interests is the integrability of a nonlinear evolution equation, although a specific definition for that does not exist in the bibliography. However, a partial differential equation is considered to be integrable when it can be linearized directly or indirectly. By indirect linearization we mean the existence of a Lax pair for the initial equation and this connection is explained in terms of operator theory. In the frame of integrability, a large number of methods dealing with the study and analysis of nonlinear evolution equations has been developed. We briefly mention some of them and present some examples, while we focus on the analytic description of a method which was introduced by Zakharov and Shabat, in 1974. This method was developed right after the Inverse Scattering Method and it is known as dressing method or ZS scheme. In order to present it, a dressed and undressed operator are introduced, by the use of operators only whithout refering to the scattering data. Based on those operators the generalized Lax equation is produced. Then we present a number of examples of evolution equations which can be solved via the dressing method and finally we constract soliton solutions for the nonlinear Schrödinger equation by solving the Gelfand-Levitan-Marchenko integral equation. Appart from the description of dressing method in its initial form, a quick review of recent papers and results is considered. The method evolved through time and was connected with some problems of complex analysis and specifically the Riemann-Hilbert (RH) and dbar problems. Those two problems arise in many mathematical and physical applications. From a wide range of recent published articles, we analytically present one which was written by Bogdanov and Zakharov (2002) and deals with Boussinesq equation. The continuous spectrum and soliton solutions are investigated, using a special form of dressind method called dbar-dressing. Soliton solutions for the Boussinesq equations demonstrate a quite extraordinary behaviour destroying the stereotype of usual solitons which are considered to be stable objects.
3

Το πρόβλημα Riemann-Hilbert και η εφαρμογή του στη μελέτη προβλημάτων αρχικών-συνοριακών τιμών γραμμικών και μη γραμμικών μερικών διαφορικών εξισώσεων

Χιτζάζης, Ιάσονας 18 June 2009 (has links)
Όπως φαίνεται και από τον τίτλο της, ο σκοπός της Διπλωματικής αυτής Εργασίας είναι διπλός. Αφ’ ενός διαπραγματεύεται ένα κλασικό μαθηματικό πρόβλημα, το πρόβλημα Riemann-Hilbert (RH), που παρουσιάζεται και επιλύεται σε μια σειρά περιπτώσεων. Αφ’ ετέρου παρουσιάζεται η εφαρμογή του προβλήματος αυτού στη μελέτη προβλημάτων αρχικών ή αρχικών-συνοριακών τιμών για γραμμικές και μη γραμμικές μερικές διαφορικές εξισώσεις. Η εργασία διαρθρώνεται σε τεσσερα (4) κεφάλαια. Ακριβέστερα, η δομή των κεφαλαίων είναι η ακόλουθη. Το πρώτο κεφάλαιο αποτελεί την εισαγωγή της εργασίας και περιέχει, εκτός από μια εποπτική παρουσίαση του προβλήματος, μια σύντομη ιστορική αναδρομή καθώς και παράθεση των εφαρμογών του προβλήματος. Το δεύτερο κεφάλαιο τιτλοφορείται ‘Ολοκληρώματα τύπου Cauchy’ και είναι αφιερωμένο στην παρουσίαση του αναγκαίου υποβάθρου, με σκοπό να είναι η ακόλουθη παρουσίαση αυτάρκης. Τα θέματα που διαπραγματεύεται είναι: Oλοκληρώματα τύπου Cauchy, συναρτήσεις τύπου Hölder, ολοκληρώματα κύριας τιμής του Cauchy, θεώρημα των Plemelj-Sokhotski, ολοκληρωτικός τελεστής του Cauchy, ολοκληρώματα τύπου Cauchy στην πραγματική ευθεία. Το τρίτο κεφάλαιο, ‘Το πρόβλημα Riemann-Hilbert’, παρουσιάζει το πρόβλημα καθώς και την επίλυσή του σε μια σειρά περιπτώσεων. Στην πιο απλή διατύπωσή του, το πρόβλημα ζητά τον προσδιορισμό μιας τμηματικά ολόμορφης μιγαδικής συνάρτησης μιας μιγαδικής μεταβλητής η οποία παρουσιάζει δοσμένο άλμα κατά μήκος δοσμένης καμπύλης του μιγαδικού επιπέδου. Εστιαζόμαστε αποκλειστικά σε βαθμωτά προβλήματα. Επίσης, εργαζόμαστε με συνοριακές καμπύλες που έχουν την ιδιότητα να χωρίζουν το μιγαδικό επίπεδο σε δύο τμήματα: κλειστές καμπύλες, καθώς και την πραγματική ευθεία. Ειδικότερα, αναλύονται τα ακόλουθα προβλήματα: (i) Πρόβλημα Riemann-Hilbert (RH) για κλειστές καμπύλες: (1) Aθροιστικό (additive) πρόβλημα RH. (2) Πρόβλημα παραγοντοποίησης (factorization) RH. (3) Γενικό μη ομογενές πρόβλημα RH. (ii) Πρόβλημα RH επί της πραγματικής ευθείας: (1) Aθροιστικό (additive) πρόβλημα RH. (2) Πρόβλημα παραγοντοποίησης (factorization) RH. (3) Γενικό μη ομογενές πρόβλημα RH. Το τέταρτο κεφάλαιο τιτλοφορείται ‘Προβλήματα Αρχικών-Συνοριακών Τιμών για Γραμμικές και μη Γραμμικές Μερικές Διαφορικές Εξισώσεις’. Εδώ διαπραγματευόμαστε μερικές διαφορικές εξισώσεις (ΜΔΕ), τόσο γραμμικές όσο και μη γραμμικές, που έχουν την ιδιότητα να διαθέτουν ζεύγος Lax (Lax pair formulation): Aυτό σημαίνει ότι κάθε μία από αυτές τις ΜΔΕ μπορεί να γραφεί σαν η συνθήκη συμβατότητας (ολοκληρωσιμότητας) ενός ζεύγους γραμμικών ΜΔΕ, που περιέχει και μια ελεύθερη μιγαδική παράμετρο (φασματική παράμετρος). Τέτοιες ΜΔΕ χαρακτηρίζονται και σαν ολοκληρώσιμες (integrable) με τη μέθοδο της αντίστροφης σκέδασης (inverse scattering method). Η τελευταία αποτελεί μια μέθοδο επίλυσης του προβλήματος αρχικών τιμών, ή Cauchy, για εξελικτικές ΜΔΕ αυτού του είδους. Η νεότερη μέθοδος του ενοποιημένου φασματικού μετασχηματισμού (unified transform method), ή της ταυτόχρονης φασματικής ανάλυσης (simultaneous spectral analysis) του ζεύγους Lax, γενικεύει την προηγούμενη μέθοδο με τρόπο που να μπορεί να εφαρμοστεί και σε προβλήματα αρχικών-συνοριακών τιμών τέτοιων ΜΔΕ (και όχι μόνο). Στο κεφάλαιο αυτό της εργασίας μελετιούνται τα ακόλουθα προβλήματα. (i). Το πρόβλημα αρχικών τιμών (ΠΑΤ) για τη (γραμμική) ΜΔΕ της διάχυσης (ή θερμότητας) (heat (or diffusion) equation). Εδώ παρουσιάζεται η μέθοδος της αντίστροφης σκέδασης στην απλούστερή της μορφή. (ii). Ένα αρκετά γενικό φασματικό πρόβλημα, που μπορεί να αποτελέσει το χωρικό μέρος του ζευγαριού Lax για μια πλειάδα μη γραμμικών ΜΔΕ. Στη συνέχεια, η προσοχή μας εστιάζεται στο λεγόμενο φασματικό πρόβλημα των Zakharov-Shabat. Σαν εφαρμογή, μελετάται το ΠΑΤ για τη μη γραμμική Εξίσωση Schrodinger (Nonlinear Schrodinger, NLS). (iii). Το πρόβλημα αρχικών-συνοριακών τιμών (ΠΑΣΤ) για την εξίσωση της διάχυσης ορισμένη στην ημιευθεία της χωρικής μεταβλητής. Εδώ περιγράφεται η μέθοδος του ενοποιημένου φασματικού μετασχηματισμού στην απλούστερή της μορφή, εφαρμοζόμενη δηλαδή σε ένα γραμμικό πρόβλημα. H εργασία καταλήγει με την παράθεση της βιβλιογραφίας, σύμφωνα με τις αναφορές που προκύπτουν από το κείμενο. / As it is shown in its title, the purpose of this M.Sc.thesis is twofold. First, we discuss a classical mathematical problem, called the Riemann-Hilbert problem. This problem is presented and solved in a series of cases. Afterwards, we present the applications of this problem to the study of initial value problems and initial-boundary value problems for linear and nonlinear partial differential equations. The thesis is organized in four (4) chapters. More accurately, the structure of the four chapters is as follows. The first chapter constitutes of the Introduction to the thesis. It contains the presentation of the problem, a short historical retrospection of the problem, as well as a list of applications of the problem. The second chapter, entitled “Cauchy Type Integrals”, is dedicated to the presentation of the necessary background, so as to make the following presentation self-contained. The topics negotiated are: Cauchy type integrals, Hölder type functions, Cauchy principal value integrals, the Plemelj-Sokhotski theorem, the Cauchy integral operator, Cauchy type integrals on the real line. The third chapter, “The Riemann-Hilbert Problem”, presents the problem, as well s its solution, in a series of cases. The problem’s simplest formulation seeks for a sectionally holomorphic, complex valued function of a single complex variable, which undergoes a given (predetermined) jump along a given curve of the complex plane. We focus our attention exclusively on scalar Riemann-Hilbert problems. We work exclusively with discontinuity curves that have the property to divide the complex plane into two sections, and, in particular, with closed curves, as well as with the real line. In particular, we analyse the following problems: (i). The Riemann-Hilbert (RH) problem for closed curves: (1). Additive RH problem. (2). Factorization RH problem. (3). General non-homogeneous RH problem. (ii). RH problem on the real line. (1). Additive RH problem. (2). Factorization RH problem. (3). General non-homogeneous RH problem. The fourth chapter is entitled “Initial-Boundary Value Problems for Linear and Nonlinear Partial Differential Equations”. Here we negotiate with patial differential equations (PDE), linear as well as nolinear, which have the distinguishing property of possessing a so-called Lax pair formulation. By this we mean that, any of these PDEs is equivalent to the compatibility (integrability) condition of a proper pair of linear differential equations, the so-called Lax pair, that also contains a free complex parameter, termed to the spectral parameter. Such PDEs are also characterized as integrable by the inverse scattering method. The last method, also called the inverse spectral method, is a method for solving the initial value problem, or Cauchy problem, for evolutionary PDEs of this kind. The new method of simultaneous spectral analysis of the Lax pair, also called the unified transform method, generalizes the previous one in a manner that renders it applicable also to initial-boundary value problems for such PDEs. In this, fourth, chapter we study the following problems: (i). The initial value problem for the (linear) heat (or diffusion) equation. Here is presented the inverse scattering method in its simplest form. (ii). An adequately general spectral problem, which may constitute the spatial part of the Lax pair for many integrable nonlinear PDEs. We afterwards focus our attention to a specific case of this problem, the so-called Zakharov-Shabat spectral problem. As an application, we study the initial value problem for the so-called Nonlinear Schrodinger (NLS) equation. (iii). The initial-boundary value problem for the heat (or diffusion) equation posed on a semi-infinite interval of the spatial variable. Here we present the unified transform method in its simplest form, i.e., applied on a linear problem. The thesis terminates with the presentation of the bibliography, in accordance with the references that appear in the text.

Page generated in 0.0487 seconds