Spelling suggestions: "subject:"ατμών"" "subject:"από""
1 |
Καταλυτική αναμόρφωση της αιθανόλης με ατμό για την παραγωγή υδρογόνου για την τροφοδοσία στοιχείων καυσίμου / Catalytic steam reforming of ethanol for hydrogen production for application in fuel cellsΦατσικώστας, Αθανάσιος 22 June 2007 (has links)
Μελετήθηκε η αντίδραση αναμόρφωσης της αιθανόλης με ατμό προς παραγωγή υδρογόνου για την τροφοδοσία στοιχείων καυσίμου. Η παραγωγή υδρογόνου από αιθανόλη, αποτελεί ελκυστική διεργασία τόσο από οικονομική, όσο και από περιβαλλοντική άποψη. Το παραγόμενο υδρογόνο μπορεί να χρησιμοποιηθεί σε στοιχεία καυσίμου ως ρεύμα τροφοδοσίας, όπου οξειδώνεται ηλεκτροχημικά παρουσία αέρα αποδίδοντας ηλεκτρική ενέργεια και θερμότητα με μοναδικό προϊόν καύσης το νερό. Η αντίδραση αναμόρφωσης της αιθανόλης με ατμό είναι θερμοδυναμικά εφικτή και η αύξηση της θερμοκρασίας οδηγεί σε αυξημένη απόδοση σε υδρογόνο. Η συνολική διεργασία παραγωγής υδρογόνου από ατμοαναμόρφωση της αιθανόλης έχει υψηλότερη θεωρητική απόδοση από την ατμοαναμόρφωση του μεθανίου, η οποία είναι η κύρια διεργασία παραγωγής υδρογόνου σήμερα. Οι μελέτες της αντίδρασης αναμόρφωσης της αιθανόλης με ατμό σε καταλύτες κοβαλτίου, ευγενών μετάλλων και νικελίου, έδειξαν ότι οι βέλτιστοι καταλύτες της διεργασίας είναι οι 2% Rh/Al2O3, 5% Ru/Al2O3 και 17% Ni/(La2O3/Al2O3). Οι καταλύτες νικελίου εναποτεθειμένοι σε γ-Al2O3, La2O3 και La2O3/Al2O3 μελετήθηκαν προκειμένου να διερευνηθεί το δίκτυο των αντιδράσεων της αιθανόλης με τον ατμό με χρήση δυναμικών τεχνικών και τεχνικών μόνιμης κατάστασης. Προσεγγίστηκε το δίκτυο αντιδράσεων και τιτλοδοτήθηκε ο εναποτεθειμένος άνθρακας. Αναπτύχθηκαν κεραμικοί και μεταλλικοί θερμικά ολοκληρωμένοι αντιδραστήρες αναμόρφωσης της αιθανόλης με ατμό. Η πραγματοποίηση των αντιδράσεων αναμόρφωσης και καύσης στον κεραμικό αντιδραστήρα οδήγησε σε ικανοποιητική απόδοση. Παράλληλα, διεξήχθησαν πειράματα αναμόρφωσης και καύσης της αιθανόλης στο μεταλλικό αντιδραστήρα με χρήση καταλυτικών κλινών. Τα πειράματα αναμόρφωσης - καύσης απέδειξαν τη λειτουργικότητα του συστήματος, ενώ η σχετική θέση των καταλυτικών κλινών διαπιστώθηκε ότι αποτελεί σημαντικό παράγοντα στην απόδοση του αντιδραστήρα. Τέλος, αναπτύχθηκαν καινοτόμοι μέθοδοι εναπόθεσης καταλυτικών στρωμάτων στις επιφάνειες μεταλλικών σωλήνων. Στην εξωτερική επιφάνεια εναποτέθηκε αλούμινα ως υπόστρωμα για τον καταλύτη αναμόρφωσης με ψεκασμό πλάσματος, ενώ στο εσωτερικό του σωλήνα χρησιμοποιήθηκε μέθοδος εναπόθεσης αλουμινίου για τη δημιουργία του απαιτούμενου συγκολλητικού υποστρώματος. Οι καταλύτες που παρήχθησαν είχαν υψηλή αντοχή σε θερμικούς κύκλους και μεγάλη απόδοση στην αντίδραση αναμόρφωσης. / Production of hydrogen from steam reforming of ethanol is examined for application in fuel cells. The production of hydrogen from ethanol is an attractive operation from economical as well as from environmental point of view. The produced hydrogen can be fed to fuel cells, undergoing oxidation and producing electric energy and heat with the only combustion product being water. Steam reforming of ethanol is thermodynamically feasible and high temperatures result in high efficiency towards hydrogen production. The overall thermal efficiency of the operation is calculated and proven to be higher than the respective value of steam reforming of methane, which is the main commercial hydrogen producing operation. Steam reforming of ethanol was studied with catalysts based on Co, noble metals and Ni. The most promising materials were found to be the 2% Rh/Al2O3, 5% Ru/Al2O3 and 17% Ni/(La2O3/Al2O3) catalysts. The reaction network of steam reforming of ethanol, as well as carbon deposition, over nickel catalysts supported on γ-Αl2O3, La2O3 and La2O3/γ-Al2O3 is investigated employing transient and steady state techniques. Ceramic and metallic heat integrated reactors were developed for the reaction of steam reforming of ethanol. Experiments of coupled combustion – reformation in the ceramic reactor resulted in increased efficiency. In addition, experiments of coupled combustion – reformation were carried out in a metallic reactor by use of catalytic beds. The combustion-reformation experiments proved the effectiveness of the reactor, while the relative position of the two catalytic beds plays important role in the efficiency of the reactor. Finally, novel methods of catalyst deposition over metallic tubes were developed. On the outer surface an intermediate film of aluminum oxide was deposited by means of thermal plasma spraying in order to support the catalyst. Over the inner surface of the tube, aluminum powder was deposited and thermally processed to produce the necessary intermediate substrate. The materials produced by the above mentioned methods, were rigid and stable under extreme thermal-cycles, additionally the reforming material exhibited high efficiency.
|
2 |
Αναμόρφωση βιοκαυσίμων για την παραγωγή υδρογόνου / Reformation of biofuels for hydrogen productionΜπασαγιάννης, Αριστείδης 08 November 2007 (has links)
Στην παρούσα διατριβή μελετάται η δυνατότητα αναμόρφωσης βιοκαυσίμων με ατμό, και συγκεκριμένα του βιοελαίου και της βιοαιθανόλης, με σκοπό την παραγωγή ρεύματος πλούσιου σε υδρογόνο για την τροφοδοσία κυψελίδων καυσίμου. Η χρήση υδρογόνου σε κυψελίδες καυσίμου αποτελεί μια από τις πλέον υποσχόμενες διεργασίες για την παραγωγή ενέργειας τόσο σε σταθερές όσο και σε κινητές εφαρμογές. Το υδρογόνο ως καύσιμο έχει το πλεονέκτημα ότι δεν παράγει ρυπαντικές ουσίες για την ατμόσφαιρα κατά την παραγωγή ενέργειας, ενώ οι κυψελίδες καυσίμου αποδίδουν πολύ μεγαλύτερη απόδοση σε σχέση με τις συμβατικές μηχανές εσωτερικής καύσης. Όταν δε το υδρογόνο προέρχεται από τη βιομάζα, οι εκπομπές στην ατμόσφαιρα σε CO2 είναι μηδενικές, αφού το ισοζύγιο του άνθρακα παραμένει κλειστό, μη επιβαρύνοντας έτσι το φαινόμενο του θερμοκηπίου.
Το βιοέλαιο και η βιοαιθανόλη ανήκουν στην κατηγορία των βιοκαυσίμων, αφού προέρχονται από τη βιομάζα, και συγκεκριμένα παράγονται μέσω της πυρόλυσης και της ζύμωσής της, αντίστοιχα. Η αντίδραση αναμόρφωσής τους με ατμό είναι εφικτή από θερμοδυναμικής απόψεως, ενώ η απόδοση της συγκεκριμένης διεργασίας σε υδρογόνο είναι αρκετά υψηλή. Θερμοδυναμικά, η αντίδραση αναμόρφωσης ευνοείται σε υψηλές θερμοκρασίες και μικρές πιέσεις.
Λόγω της πολυπλοκότητας του βιοελαίου, που αποτελεί μίγμα εκατοντάδων οξυγονούχων οργανικών ενώσεων, αρχικά επιλέγονται πρότυπες ενώσεις αντιπροσωπευτικές αυτού. Ως τέτοια επιλέχθηκε το οξικό οξύ που βρίσκεται σε σημαντικά ποσοστά (~10%) στο βιοέλαιο. Δοκιμάστηκαν διάφοροι υποστηριγμένοι καταλύτες μετάλλων για την ενεργότητά τους στην αντίδραση αναμόρφωσης του οξικού οξέος με ατμό. Διάφοροι παράμετροι που επιδρούν στην καταλυτική ενεργότητα και εκλεκτικότητα διερευνήθηκαν υπό συνθήκες αντίδρασης, όπως η σύσταση του καταλύτη (επίδραση της φύσης του μετάλλου και του φορέα), η θερμοκρασία αντίδρασης και ο χρόνος αντίδρασης. Η μεταλλική φάση των καταλυτών αυτών αποτελούνταν από διάφορα μέταλλα, όπως Pt, Pd, Rh, Ru και Ni, τα οποία ήταν διασπαρμένα σε διάφορους φορείς μεταλλικών οξειδίων, όπως Al2O3, La2O3/Al2O3, MgO/Al2O3 και CeO2/Al2O3. Βρέθηκε ότι οι καταλύτες Ru και Ni παρουσιάζουν την υψηλότερη ενεργότητα και εκλεκτικότητα προς παραγωγή υδρογόνου. Ιδιαίτερα, οι καταλύτες Ru που είναι εναποτεθιμένοι σε φορείς La2O3/Al2O3 και MgO/Al2O3 επιδεικνύουν και πολύ καλή σταθερότητα συναρτήσει του χρόνου αντίδρασης. Επιπλέον, υπολογίστηκε ο ρυθμός εναπόθεσης άνθρακα στην καταλυτική επιφάνεια κατά τη διάρκεια της αντίδρασης και βρέθηκε ότι επηρεάζεται ισχυρά από τη φύση του καταλυτικού υλικού.
Η διερεύνηση του δικτύου αντιδράσεων που λαμβάνουν χώρα υπό συνθήκες αναμόρφωσης του οξικού οξέος με ατμό, παρουσία καταλυτών νικελίου αλλά και των φορέων Al2O3 και La2O3, έγινε με τη χρήση δυναμικών τεχνικών με φασματογράφο μάζας, αλλά και τεχνικών μόνιμης κατάστασης. Το οξικό οξύ αλληλεπιδρά έντονα με το φορέα Al2O3 και λιγότερο έντονα με το La2O3. Σε ενδιάμεσες θερμοκρασίες, οι κύριες αντιδράσεις που πραγματοποιούνται είναι αυτές της διάσπασης και της κετονοποίησης του οξικού οξέος, ενώ σε υψηλότερες αυτές της αναμόρφωσης του οξικού οξέος και της μετατόπισης του CO. Παρουσία του Ni, η ενεργότητα μετατοπίζεται σημαντικά προς χαμηλότερες θερμοκρασίες. Το νικέλιο προωθεί τις αντιδράσεις αναμόρφωσης και επιβραδύνει το ρυθμό εναπόθεσης άνθρακα στην καταλυτική επιφάνεια. Επίσης, βρέθηκε ότι η εναπόθεση άνθρακα ευνοείται σε χαμηλές θερμοκρασίες, όξινους φορείς και μεγάλους λόγους τροφοδοσίας άνθρακα-ατμού.
Αντίστοιχα δυναμικά πειράματα, για τη διερεύνηση του δικτύου αντιδράσεων υπό συνθήκες αντίδρασης, πραγματοποιήθηκαν και σε καταλύτες Ru διασπαρμένους σε φορείς Al2O3 και MgO/Al2O3. Και σε αυτή την περίπτωση, σε ενδιάμεσες θερμοκρασίες ευνοείται η αντίδραση κετονοποίησης και σε μικρότερο βαθμό αυτή της διάσπασης του οξικού οξέος. Παρουσία του ρουθηνίου η ενεργότητα μετατοπίζεται προς χαμηλότερες θερμοκρασίες και παρατηρείται παραγωγή υδρογόνου με υψηλούς ρυθμούς. Το ρουθήνιο προωθεί τις αντιδράσεις αναμόρφωσης και επιβραδύνει το ρυθμό εναπόθεσης άνθρακα στην καταλυτική επιφάνεια. Επίσης, διερευνήθηκε ο ρόλος του MgO στον καταλύτη Ru/MgO/Al2O3 και εάν και πώς η παρουσία του επιδρά θετικά στην ενεργότητα του συγκεκριμένου καταλύτη. Βρέθηκε ότι η αντίδραση των οξειδίων του αλουμινίου και μαγνησίου είναι πλήρης, οδηγώντας στο σχηματισμό ενός σπινελίου μαγνησίου-αλουμινίου. Η αυξημένη ενεργότητα του καταλύτη Ru/MgO/Al2O3, σε σύγκριση με τον Ru/Al2O3, σχετίζεται με το γεγονός ότι το σπινέλιο Mg-Al προσφέρει αυξημένη κινητικότητα των ιόντων Ο- και ΟΗ- (spillover) από το φορέα στο μέταλλο, μειωμένη οξύτητα σε σύγκριση με το φορέα Al2O3, καθώς και αυξημένη ικανότητα στον καταλύτη για προσρόφηση ατμού.
Ο καταλύτης 5% Ru/MgO/Al2O3 δοκιμάστηκε και υπό συνθήκες αναμόρφωσης του υδατικού κλάσματος του βιοελαίου, και μάλιστα χρησιμοποιήθηκαν δομημένα υποστρώματα, όπως πελλέτες, κεραμικοί μονόλιθοι ή σπόγγοι, έτσι ώστε να αποτελέσματα των συγκεκριμένων πειραμάτων να έχουν άμεση εφαρμογή. Βρέθηκε ότι όλες οι διαφορετικές δομές παρουσιάζουν πολύ καλή ενεργότητα, μετατρέποντας εξ’ ολοκλήρου το βιοέλαιο, καλή εκλεκτικότητα προς παραγωγή υδρογόνου και σταθερή λειτουργία σε σχέση με το χρόνο αντίδρασης. Ωστόσο, ο καταλύτης ρουθηνίου σε πελλέτες βρέθηκε να παρουσιάζει την καλύτερη συμπεριφορά από όλους τους υπόλοιπους. Οι αντιδράσεις αναμόρφωσης και, επομένως, η παραγωγή υδρογόνου ευνοούνται σε υψηλές θερμοκρασίες και μικρές ταχύτητες χώρου. Η εναπόθεση του άνθρακα αποτελεί ένα από τα σημαντικότερα προβλήματα σε αυτού του είδους τις διεργασίες. Μόνο ένα μικρό μέρος του παρεχόμενου άνθρακα εναποτίθεται στην καταλυτική επιφάνεια, κυρίως στη μορφή CHx. Ωστόσο, ο σχηματισμός ανθρακικών εναποθέσεων είναι αρκετά πιο έντονος στα τοιχώματα του αντιδραστήρα πάνω από την καταλυτική κλίνη, λόγω του ομογενούς πολυμερισμού των ασταθών συστατικών του βιοελαίου.
Τέλος, διάφοροι καταλύτες ευγενών μετάλλων (Pt, Pd, Ru, Rh) υποστηριζόμενοι σε φορέα Al2O3¬ δοκιμάσθηκαν ως προς την καταλυτική τους ενεργότητα και εκλεκτικότητα υπό συνθήκες αναμόρφωσης αιθανόλης με ατμό, στο θερμοκρασιακό εύρος των 280-450 0C. Βρέθηκε ότι ο Pt και το Pd είναι τα πιο ενεργά από τα μέταλλα που εξετάστηκαν. Η διερεύνηση της επίδρασης του φορέα στην καταλυτική ενεργότητα και εκλεκτικότητα έγινε σε καταλύτες Pt διεσπαρμένους σε διάφορους φορείς μεταλλικών οξειδίων (Al2O3, CeO2, ZrO2, YSZ). Οι συγκεκριμένοι καταλύτες δοκιμάστηκαν και για την σταθερότητά τους συναρτήσει του χρόνου αντίδρασης. Ο καταλύτης Pt/Al2O3 βρέθηκε να παρουσιάζει την μεγαλύτερη ενεργότητα και την υψηλότερη εκλεκτικότητα, υπό συνθήκες αντίδρασης, αλλά και πολύ σταθερή λειτουργία με το χρόνο αντίδρασης. Τέλος, παρουσία του συγκεκριμένου καταλύτη διερευνήθηκε το δίκτυο αντιδράσεων που λαμβάνει χώρα σε συνθήκες αναμόρφωσης της αιθανόλης. / In the present study is investigated the process of steam reforming reaction of bio-fuels, such as bio-oil and bio-ethanol, for the production of a gas stream rich to hydrogen, in order to feed fuel cells. Hydrogen, in combination with fuel cells, is being considered as an environmentally friendly source of energy for automotive as well as stationary applications. Hydrogen has the significant advantage of producing no air or other pollutants in its transformation to energy, while fuel cells, which operate primarily on hydrogen, offer enhanced efficiency in power generation. However, real environmental benefits are linked to the ability to produce hydrogen from renewable sources with no net production of greenhouse gasses. A viable renewable source, gaining attention in recent years, is bio-fuels.
Bio-oil and bio-ethanol are bio-fuels because they are originated from biomass treatment, and, in particular, via the fast pyrolysis and the fermentation of biomass, respectively. Their steam reforming reaction is entirely feasible from the thermodynamic point of view, while the efficiency of such process in hydrogen production is significantly high. Thermodynamically the reaction of steam reforming is favored at high temperatures and low pressures.
Due to the complexity of bio-oil, which is consisted of hundreds of organics oxygenates, model compounds representatives of bio-oil, are initially used. Acetic acid was chosen as a model compound, because it is present in significant amounts in bio-oil (~10%). A variety of supported metal catalysts were tested under conditions of steam reforming of acetic acid. The influence of several parameters on catalytic activity and selectivity were examined, including catalyst composition, i.e. nature of the metal and the carrier, reaction temperature and time on stream. The metallic phase of such catalysts was comprised of various metals, such as Pt, Pd, Rh, Ru and Ni, which were supported on metal oxides carriers, such as Al2O3, La2O3/Al2O3, MgO/Al2O3 and CeO2/Al2O3. It was found that Ni-based and Ru-based catalysts present high activity and selectivity toward hydrogen production. Ru catalysts supported on La2O3/Al2O3 and MgO/Al2O3 carriers, showed good long term stability as a function of time on stream. However, Ni catalysts were not as stable as Ru catalysts. The amount of carbon deposited on each catalyst was estimated, and it was found that it depends strongly on the nature of the catalyst.
The reaction network under conditions of steam reforming of acetic acid was investigated over Al2O3 and La2O3, and Ni catalyst supported on La2O3/Al2O¬3 carrier, employing transient and steady-state techniques. It was found that acetic acid interacts strongly with the Al¬2O3 carrier and less strongly with La2O3. Decomposition reactions as well as the ketonization reaction take place, especially at intermediate temperatures. Reforming reactions and the WGS reaction occur at higher temperatures. In the presence of Ni, catalytic activity is shifted toward lower temperatures. Nickel promotes steam reforming reactions and retards the rate of carbon deposition onto the catalyst surface. It was also found that carbon formation is affected by reaction temperature, the HAc/H2O ratio, and catalyst composition. Carbon deposition is favoured at low reaction temperatures, at more acidic carriers and at high HAc/H2O ratio.
Transient experiments were also conducted for the Ru catalysts supported on Al2O3 and MgO/Al2O3 carriers. It was found that, in this case as well, the ketonization reaction firstly, and decomposition reaction of acetic acid secondly, favoured at intermediate temperatures. In the presence of Ru, catalytic activity is shifted towards lower temperatures and hydrogen production occurs at high rates. Ru catalysts promote the steam reforming reaction and retard the rate of carbon deposition onto the catalytic surface. Also, the role of MgO in catalyst formulation was elucidated. It has been found that the solid-state reaction of alumina with magnesium oxide is complete, forming magnesium aluminate spinel. The enhanced activity of the Ru/MgO/Al2O3 catalyst, as compared to the Ru/Al2O3 one, seems to be associated with the fact that the magnesium aluminate spinel offers enhanced O and/or –OH anion spillover from the carrier onto the metal particles, reduced acidity as compared to the alumina carrier, as well as enhanced ability for H2O adsorption.
A series of Ru/MgO/Al2O3 catalysts supported on cordierite monoliths, ceramic foams and γ-Al2O3 pellets were prepared and tested for the production of hydrogen by catalytic steam reforming of the aqueous fraction of bio-oil. All different structural forms of the catalyst exhibited satisfactory activity, converting completely the bio-oil, good selectivity toward hydrogen and satisfactory stability with time on stream. However, the catalyst supported on pellets exhibited the best catalytic performance, among all catalysts investigated. Reforming reactions, and thus hydrogen production, are favoured at high temperatures and low space velocities. Coking is one of the most significant problems encountered in these processes. It was found that only a small part of the incoming carbon is deposited on the catalyst surface, which is mainly present as CHx. However, coke deposition is more intense on the reactor wall above the catalytic bed, due to homogeneous polymerization of unstable ingredients of bio-oil.
Finally, a variety a noble metal catalysts (Pt, Pd, Ru, Rh), supported on the Al2O3 carrier were tested with respect to their catalytic activity and selectivity under conditions of steam reforming of ethanol, in the temperature range of 280-450 0C. It was found that Pt and Pd are the most active metal among all catalysts tested. The effect of the carrier nature was investigated for Pt catalysts supported on a variety of metal oxide carriers, such as Al2O3, CeO2, ZrO2 and YSZ. These catalysts were also tested for their stability as a function of time on stream. The Pt/Al2O3 catalyst presents the highest activity and selectivity among all catalysts tested, as well as very stable performance with time on stream. Finally, the reaction network under conditions of ethanol reforming, in the presence of the specific catalyst, was investigated.
|
3 |
Παραγωγή υδρογόνου μέσω αναμόρφωσης της μεθανόλης με οξειδικούς καταλύτες χαλκού / Hydrogen production via methanol steam reforming over copper oxide-catalystsΠαπαβασιλείου, Ιωάννα 07 July 2009 (has links)
Σκοπός της παρούσας διδακτορικής διατριβής ήταν η ανάπτυξη ενός αποτελεσματικού καταλυτικού συστήματος με βάση το χαλκό, για την αναμόρφωση της μεθανόλης. Για το σκοπό αυτό εξετάστηκαν οι καταλυτικές ιδιότητες τριών συστημάτων βασιζόμενων σε καταλύτες χαλκού και παρασκευασμένων με τη μη συμβατική μέθοδο της καύσης: CuO-CeO2, τροποποιημένων καταλυτών CuO-CeO2 και Cu-Mn-O για την προαναφερθείσα διεργασία, καθώς και τα βέλτιστα δείγματα των καταλυτών CuO-CeO2 και Cu-Mn-O υποστηριγμένων σε μεταλλικούς αφρούς Al. Τα φυσικοχημικά χαρακτηριστικά των καταλυτών CuO-CeO2, βρέθηκαν να εξαρτώνται από τις παραμέτρους σύνθεσης. Ο βέλτιστος καταλύτης παρασκευάστηκε με λόγο Cu/(Cu+Ce)= 0.15. Στους τροποποιημένους καταλύτες CuO-CeO2, ένα μέρος του τροποποιητή εισχωρεί στο πλέγμα της δημήτριας, οδηγώντας στο σχηματισμό στερεού διαλύματος. Αυτό είχε ως αποτέλεσμα να επηρεαστούν τα φυσικοχημικά χαρακτηριστικά των δειγμάτων, αλλά και η καταλυτική συμπεριφορά τους. Οι σπινελικοί καταλύτες Cu-Mn-O είναι πολύ ενεργοί παρά τη μικρή ειδική επιφάνειά τους. Η ενεργότητά τους είναι συγκρίσιμη με αυτή των εμπορικών καταλυτών Cu-Zn-Al. Ο βέλτιστος καταλύτης ήταν αυτός με λόγο Cu/(Cu+Mn)= 0.30. Εξίσου αποδοτικοί για την παραγωγή υδρογόνου μέσω αναμόρφωσης της μεθανόλης, μονολιθικοί καταλύτες Cu-Ce/Al foam και Cu-Mn/Al foam παρασκευάστηκαν με τη μέθοδο της καύσης. Με βάση τα ευρήματα της ισοτοπικής μελέτης, προτείνεται για τον καταλύτη Cu-Mn-O ότι η αναμόρφωση πραγματοποιείται αποκλειστικά μέσω μηχανισμού που περιλαμβάνει τον ενδιάμεσο σχηματισμό μυρμηκικού μεθυλεστέρα. Για τους καταλύτες Cu-Ce-O και Cu-Zn-Al πραγματοποιείται ταυτόχρονα και μηχανισμός που περιλαμβάνει ως ενδιάμεσο είδος το διοξομεθυλένιο. / The scope of the present thesis was the development of an effective catalytic copper-based system for methanol reforming. The catalytic properties of three different copper-based systems prepared via the non conventional combustion method, were investigated for the aforementioned process: CuO-CeO2, modified CuO-CeO2 and Cu-Mn-O, as well as the optimal CuO-CeO2 and Cu-Mn-O oxide cata¬lysts supported on Al metal foam. The physicochemical characteristics of CuO-CeO2 catalysts were found to be influenced by the parameters of the synthesis. The optimal catalyst was prepared with Cu/(Cu+Ce) ratio equal to 0.15. In the case of modified CuO-CeO2 catalysts, at least part of dopant cations gets incorporated into the CeO2 lattice leading to solid solution formation. As a result, the physicochemical characteris¬tics of the samples were influenced, as well as their catalytic performance. Cu-Mn spinel oxide catalysts were found to be highly active despite their low surface area. Their activity is comparable to that of commercial Cu-Zn-Al catalysts. The optimal catalyst was prepared with a Cu/(Cu+Mn) ratio equal to 0.30. Structured Cu-Ce/Al foam and Cu-Mn/Al foam catalysts prepared via in situ combustion method were equally effective for hydrogen production via methanol reforming. Based on the findings of an isotopic study, a mechanism has been proposed for the reforming reaction over Cu-Mn-O, where methyl formate is formed as a reaction intermediate. An additional reaction mechanism is taking place over Cu-Ce-O and commercial Cu/ZnO/Al2O3 catalysts, resulting in the intermediate dioxomethylene.
|
4 |
Ανθεκτικά στην εναπόθεση άνθρακα διμεταλλικά ανοδικά ηλεκτρόδια κυψελίδων καυσίμου με στερεό ηλεκτρολύτη / Tolerant to carbon deposition bimetallic electrodes for solid oxide fuel cellsΓαβριελάτος, Ηλίας 14 January 2009 (has links)
Η τεχνολογία κυψελίδων καυσίμου στερεού ηλεκτρολύτη είναι αρκετά ελκυστική για την συμπαραγωγή αερίου σύνθεσης και ηλεκτρικής ενέργειας. Το κυριότερο μειονέκτημα είναι η εναπόθεση άνθρακα στο ανοδικό ηλεκτρόδιο λόγω της διασπαστικής ρόφησης του CH4. Σε μια θεωρητική μελέτη, οι Besenbacher et al συμπέραναν ότι η παρουσία μικρής ποσότητας Αu σε υποστηριγμένο καταλύτη Ni οδηγεί σε σημαντική μείωση την εναπόθεση άνθρακα. Σε αντίστοιχα συμπεράσματα κατέληξαν και οι Τριανταφυλλόπουλος και Νεοφυτίδης μελετώντας τα είδη του άνθρακα που δημιουργούνται πάνω στο Ni(1%at Au)-YSZ κατά την διασπαστική ρόφηση του μεθανίου. Στην παρούσα εργασία μελετήθηκε η ηλεκτροχημική δραστικότητα διμεταλλικών ηλεκτροδίων Ni(Au1%at)-YSZ και Ni(Ag1%at)-YSZ για την μερική οξείδωση του μεθανίου καθώς και για την εσωτερική αναμόρφωση του μεθανίου με ατμό σε κυψελίδες καυσίμου στερεού ηλεκτρολύτη.
Τα ηλεκτρόδια παρασκευάστηκαν με τη μέθοδο της επιτόπου πυρανάφλεξης (in situ combustion synthesis, μέθοδος σχετικά χαμηλής θερμοκρασίας που δημιουργεί νανοδομημένα ηλεκτρόδια) και μελετήθηκαν ως προς την ηλεκτροκαταλυτική συμπεριφορά τους για την εσωτερική αναμόρφωση του μεθανίου με ατμό. Τα πειράματα θερμοσταθμικής ανάλυσης, τα κινητικά πειράματα καθώς και οι ηλεκτροχημικές μετρήσεις που πραγματοποιήθηκαν, συντέλεσαν το καθένα με το τρόπο του, στην εξαγωγή του γενικότερου συμπεράσματος ότι τα διμεταλλικά ηλεκτρόδια Ni(Au1%at)-YSZ και Ni(Ag1%at)-YSZ είναι πολύ πιο σταθερά και ανθεκτικά στην εναπόθεση άνθρακα από το ‘συμβατικό’ ηλεκτρόδιο Ni-YSZ υπό τις συνθήκες της εσωτερικής αναμόρφωσης μεθανίου με ατμό που μελετήθηκαν. Τα ανοδικά αυτά ηλεκτρόδια επομένως φαίνεται να αποτελούν ενδιαφέρουσες επιλογές για χρήση στις κυψελίδες καυσίμου στερεού ηλεκτρολύτη που λειτουργούν με μεθάνιο ακόμη και σε αρκετά υψηλές θερμοκρασίες (μέχρι και 1173K) για τα NiAu-YSZ, ή σε χαμηλότερες (έως 973-1023K) για τα NiAg-YSZ. / The technology of solid oxide fuel cells seems quite attractive for the cogeneration of synthesis gas and electrical energy. A major bottleneck that has delayed the widespread use of this technology has always been the anode’s contamination with carbon due to the dissociative adsorption of methane. In a theoretical study, Besenbacher et al concluded that small quantities of Au on a supported Ni catalyst can minimize carbon deposition. Triantafyllopoulos and Neophytides reached similar results while studying the carbon adspecies that are formed on a Ni(1%at Au)-YSZ electrocatalyst during the dissociative adsorption of methane. The present study focused on the electrochemical activity of Ni(Au1%at)-YSZ and Ni(Ag1%at)-YSZ bimetallic electrodes under internal steam reforming conditions of methane in solid oxide fuel cells.
The bimetallic electrodes were prepared by the combustion synthesis method, which is a relatively low temperature procedure that produces nanostructured electrodes, and their electrochemical behavior was investigated under internal steam reforming conditions. The thermogravimetric analysis, the electrochemical experiments as well as the kinetic measurements that were conducted, each one of them helped in reaching the general conclusion that the Ni(Au1%at)-YSZ and Ni(Ag1%at)-YSZ bimetallic electrodes are much more stable and carbon tolerant than the conventional Ni-YSZ electrode, at least under the steam reforming conditions of methane that they were studied. So these anodic electrodes seem to be interesting candidates for use in solid oxide fuel cells that operate with methane feed even at high temperatures (such as 1173K) for the NiAu-YSZ anodes, or at lower temperatures (up to 973-1023K) for the NiAg-YSZ anodes.
|
Page generated in 0.0479 seconds