• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Atomistic Simulations for Investigating Structural Stability and Selecting Initial Adsorption Orientation of Lysozyme and Apo-α-Lactalbumin at Hydrophobic and Hydrophilic Surfaces

Pansri, Siriporn Unknown Date
No description available.
2

Fate of β-Lactoglobulin, α-Lactalbumin, and Casein Proteins in Ultrafiltered Concentrated Milk after Ultra-high Temperature Processing

Alleyne, Mark Christopher 01 May 1994 (has links)
The problem of age gelation in ultra-high temperature (U1IT) sterilized milk retentate (ultrafiltered 3x concentrated) is investigated in this work. Transmission electron microscopy (1EM), utilizing the microcube encapsulation technique and protocols for immunolocalization of milk proteins, provides insight into the phenomenon of age gelation ofUHT-sterilized, ultrafiltered (UF) milk retentate. Primary antibodies (specific for the native as well as the complexed forms of milk proteins) and secondary antibodies (conjugated to gold probes) are used to elucidate the positions of the milk proteins in various samples of milk from the stage of milking through UHT sterilization and storage for 12 months, by which time gelation had occurred. The movement of the milk proteins is charted and these data are used to determine the role of the proteins in age gelation of UHT-sterilized UF milk retentate. Heat-denatured β-lactoglobulin and α-lactalbumin form complexes within the serum as well as with the casein components of the micelles. UHT sterilization not only denatures β-lactoglobulin and α-lactalbumin, but catalyzes the reaction of these whey proteins and K-casein, leading to the successful formation of the complex. Complexing of β-lactoglobulin and K-casein competitively weakens the complex of K-casein to other casein fractions of the micelle. This leads to migration of K-casein from the micelle to the serum, compromising the role of K-casein in stabilizing the casein proteins within the micellar moiety. The time-dependent loss of K-casein from the micelle would expose the calcium-insoluble micellar αs1-casein and β-casein to the serum calcium. Subsequent to this, some αs1-casein and β-casein are also released from the micelles, and gelation of the milk occurs. No information was obtained on location of αs2-casein. The release of K-casein from the micelles thus apparently represents the critical factor in the phenomenon of age gelation in UHT-sterilized milk concentrates.
3

Marquage fluorescent des protéines pour étudier les enzymes protéolytiques solubles et immobilisées par la cartographie peptidique électrophorétique

Gan, Shao MIng 06 1900 (has links)
La cartographie peptidique est une méthode qui permet entre autre d’identifier les modifications post-traductionnelles des protéines. Elle comprend trois étapes : 1) la protéolyse enzymatique, 2) la séparation par électrophorèse capillaire (CE) ou chromatographie en phase liquide à haute performance (HPLC) des fragments peptidiques et 3) l’identification de ces derniers. Cette dernière étape peut se faire par des méthodes photométriques ou par spectrométrie de masse (MS). Au cours de la dernière décennie, les enzymes protéolytiques immobilisées ont acquis une grande popularité parce qu’elles peuvent être réutilisées et permettent une digestion rapide des protéines due à un rapport élevé d’enzyme/substrat. Pour étudier les nouvelles techniques d’immobilisation qui ont été développées dans le laboratoire du Professeur Waldron, la cartographie peptidique par CE est souvent utilisée pour déterminer le nombre total de peptides détectés et leurs abondances. La CE nous permet d’avoir des séparations très efficaces et lorsque couplée à la fluorescence induite par laser (LIF), elle donne des limites de détection qui sont 1000 fois plus basses que celles obtenues avec l’absorbance UV-Vis. Dans la méthode typique, les peptides venant de l’étape 1) sont marqués avec un fluorophore avant l’analyse par CE-LIF. Bien que la sensibilité de détection LIF puisse approcher 10-12 M pour un fluorophore, la réaction de marquage nécessite un analyte dont la concentration est d’au moins 10-7 M, ce qui représente son principal désavantage. Donc, il n’est pas facile d’étudier les enzymes des peptides dérivés après la protéolyse en utilisant la technique CE-LIF si la concentration du substrat protéique initial est inférieure à 10-7 M. Ceci est attribué à la dilution supplémentaire lors de la protéolyse. Alors, afin d’utiliser le CE-LIF pour évaluer l’efficacité de la digestion par enzyme immobilisée à faible concentration de substrat,nous proposons d’utiliser des substrats protéiques marqués de fluorophores pouvant être purifiés et dilués. Trois méthodes de marquage fluorescent de protéine sont décrites dans ce mémoire pour étudier les enzymes solubles et immobilisées. Les fluorophores étudiés pour le marquage de protéine standard incluent le naphtalène-2,3-dicarboxaldéhyde (NDA), la fluorescéine-5-isothiocyanate (FITC) et l’ester de 6-carboxyfluorescéine N-succinimidyl (FAMSE). Le FAMSE est un excellent réactif puisqu’il se conjugue rapidement avec les amines primaires des peptides. Aussi, le substrat marqué est stable dans le temps. Les protéines étudiées étaient l’-lactalbumine (LACT), l’anhydrase carbonique (CA) et l’insuline chaîne B (INB). Les protéines sont digérées à l’aide de la trypsine (T), la chymotrypsine (CT) ou la pepsine (PEP) dans leurs formes solubles ou insolubles. La forme soluble est plus active que celle immobilisée. Cela nous a permis de vérifier que les protéines marquées sont encore reconnues par chaque enzyme. Nous avons comparé les digestions des protéines par différentes enzymes telles la chymotrypsine libre (i.e., soluble), la chymotrypsine immobilisée (i.e., insoluble) par réticulation avec le glutaraldéhyde (GACT) et la chymotrypsine immobilisée sur billes d’agarose en gel (GELCT). Cette dernière était disponible sur le marché. Selon la chymotrypsine utilisée, nos études ont démontré que les cartes peptidiques avaient des différences significatives selon le nombre de pics et leurs intensités correspondantes. De plus, ces études nous ont permis de constater que les digestions effectuées avec l’enzyme immobilisée avaient une bonne reproductibilité. Plusieurs paramètres quantitatifs ont été étudiés afin d’évaluer l’efficacité des méthodes développées. La limite de détection par CE-LIF obtenue était de 3,010-10 M (S/N = 2,7) pour la CA-FAM digérée par GACT et de 2,010-10 M (S/N = 4,3) pour la CA-FAM digérée par la chymotrypsine libre. Nos études ont aussi démontrées que la courbe d’étalonnage était linéaire dans la région de travail (1,0×10-9-1,0×10-6 M) avec un coefficient de corrélation (R2) de 0,9991. / Peptide mapping is a routine method for identifying post-translational modifications of proteins. It involves three steps: 1) enzymatic proteolysis, 2) separation of the peptide fragments by capillary electrophoresis (CE) or high performance liquid chromatography (HPLC), 3) identification of the peptide fragments by photometric methods or mass spectrometry (MS). During the past decade, immobilized enzymes for proteolysis have been gaining in popularity because they can be reused and they provide fast protein digestion due to the high ratio of enzyme-to-substrate. In order to study new immobilization techniques developed in the Waldron laboratory, peptide mapping by CE is frequently used, where the total number of peptides detected and their abundance are related to enzymatic activity. CE allows very high resolution separations and, when coupled to laser-induced fluorescence (LIF), provides excellent detection limits that are 1000 times lower than with UV-Vis absorbance. In the typical method, the peptides produced in step 1) above are derivatized with a fluorophore before separation by CE-LIF. Although the detection sensitivity of LIF can approach 10 12 M for a highly efficient fluorophore, a major disadvantage is that the derivatization reaction requires analyte concentrations to be approx. 10 7 M or higher. Therefore, it is not feasible to study enzymes using CE-LIF of the peptides derivatized after proteolysis if the initial protein substrate concentration is <10-7 M because additional dilution occurs during proteolysis. Instead, to take advantage of CE-LIF to evaluate the efficiency of immobilized enzyme digestion of low concentrations of substrate, we propose using fluorescently derivatized protein substrates that can be purified then diluted. Three methods for conjugating fluorophore to protein were investigated in this work as a means to study both soluble and immobilized enzymes. The fluorophores studied for derivatization of protein standards included naphthalene-2,3-dicarboxaldehyde (NDA), fluoresceine-5-isothiocyanate (FITC) and 6-carboxyfluorescein N-succinimide ester (FAMSE). The FAMSE was found to be an excellent reagent that conjugates quickly with primary amines and the derivatized substrate was stable over time. The studied substrates were -lactalbumin (LACT), carbonic anhydrase (CA) and insulin chain-B (INB). The CE-LIF peptide maps were generated from digestion of the fluorescently derivatized substrates by trypsin (T), chymotrypsin (CT) or pepsin (PEP), either in soluble or insoluble forms. The soluble form of an enzyme is more active than the immobilized form and this allowed us to verify that the conjugated proteins were still recognized as substrates by each enzyme. The digestion of the derivatized substrates with different types of chymotrypsin (CT) was compared: free (i.e., soluble) chymotrypsin, chymotrypsin cross-linked with glutaraldehyde (GACT) and chymotrypsin immobilized on agarose gel particles (GELCT), which was available commercially. The study showed that, according to the chymotrypsin used, the peptide map would vary in the number of peaks and their intensities. It also showed that the digestion by immobilized enzymes was quite reproducible. Several quantitative parameters were studied to evaluate the efficacy of the methods. The detection limit of the overall method (CE-LIF peptide mapping of FAM-derivatized protein digested by chymotrypsin) was 3.010-10 M (S/N = 2.7) carbonic anhydrase using insoluble GACT and 2.010-10 M (S/N = 4.3) CA using free chymotrypsin. Our studies also showed that the standard curve was linear in the working region (1.0×10-9-1.0×10-6 M) with a correlation coefficient (R2) of 0.9991.
4

Marquage fluorescent des protéines pour étudier les enzymes protéolytiques solubles et immobilisées par la cartographie peptidique électrophorétique

Gan, Shao MIng 06 1900 (has links)
No description available.
5

Development of High-throughput Membrane Filtration Techniques for Biological and Environmental Applications / Development of High-throughput Membrane Filtration Techniques

Kazemi, Amir Sadegh 11 1900 (has links)
Membrane filtration processes are widely utilized across different industrial sectors for biological and environmental separations. Examples of the former are sterile filtration and protein fractionation via microfiltration (MF) and ultrafiltration (UF) while drinking water treatment, tertiary treatment of wastewater, water reuse and desalination via MF, UF, nanofiltration (NF) and reverse-osmosis (RO) are examples of the latter. A common misconception is that the performance of membrane separation is solely dependent on the membrane pore size, whereas a multitude of parameters including solution conditions, solute concentration, presence of specific ions, hydrodynamic conditions, membrane structure and surface properties can significantly influence the separation performance and the membrane’s fouling propensity. The conventional approach for studying filtration performance is to use a single lab- or pilot-scale module and perform numerous experiments in a sequential manner which is both time-consuming and requires large amounts of material. Alternatively, high-throughput (HT) techniques, defined as the miniaturized version of conventional unit operations which allow for multiple experiments to be run in parallel and require a small amount of sample, can be employed. There is a growing interest in the use of HT techniques to speed up the testing and optimization of membrane-based separations. In this work, different HT screening approaches are developed and utilized for the evaluation and optimization of filtration performance using flat-sheet and hollow-fiber (HF) membranes used in biological and environmental separations. The effects of various process factors were evaluated on the separation of different biomolecules by combining a HT filtration method using flat-sheet UF membranes and design-of-experiments methods. Additionally, a novel HT platform was introduced for multi-modal (constant transmembrane pressure vs. constant flux) testing of flat-sheet membranes used in bio-separations. Furthermore, the first-ever HT modules for parallel testing of HF membranes were developed for rapid fouling tests as well as extended filtration evaluation experiments. The usefulness of the modules was demonstrated by evaluating the filtration performance of different foulants under various operating conditions as well as running surface modification experiments. The techniques described herein can be employed for rapid determination of the optimal combination of conditions that result in the best filtration performance for different membrane separation applications and thus eliminate the need to perform numerous conventional lab-scale tests. Overall, more than 250 filtration tests and 350 hydraulic permeability measurements were performed and analyzed using the HT platforms developed in this thesis. / Thesis / Doctor of Philosophy (PhD) / Membrane filtration is widely used as a key separation process in different industries. For example, microfiltration (MF) and ultrafiltration (UF) are used for sterilization and purification of bio-products. Furthermore, MF, UF and reverse-osmosis (RO) are used for drinking water and wastewater treatment. A common misconception is that membrane filtration is a process solely based on the pore size of the membrane whereas numerous factors can significantly affect the performance. Conventionally, a large number of lab- or full-scale experiments are performed to find the optimum operating conditions for each filtration process. High-throughput (HT) techniques are powerful methods to accelerate the pace of process optimization—they allow for multiple experiments to be run in parallel and require smaller amounts of sample. This thesis focuses on the development of different HT techniques that require a minimal amount of sample for parallel testing and optimization of membrane filtration processes with applications in environmental and biological separations. The introduced techniques can reduce the amount of sample used in each test between 10-50 times and accelerate process development and optimization by running parallel tests.

Page generated in 0.0561 seconds