• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 968
  • 480
  • 294
  • 27
  • 17
  • 13
  • 9
  • 7
  • 7
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 1992
  • 642
  • 638
  • 494
  • 432
  • 342
  • 337
  • 307
  • 298
  • 297
  • 296
  • 289
  • 229
  • 221
  • 172
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Learning with Deictic Representation

Finney, Sarah, Gardiol, Natalia H., Kaelbling, Leslie Pack, Oates, Tim 10 April 2002 (has links)
Most reinforcement learning methods operate on propositional representations of the world state. Such representations are often intractably large and generalize poorly. Using a deictic representation is believed to be a viable alternative: they promise generalization while allowing the use of existing reinforcement-learning methods. Yet, there are few experiments on learning with deictic representations reported in the literature. In this paper we explore the effectiveness of two forms of deictic representation and a naive propositional representation in a simple blocks-world domain. We find, empirically, that the deictic representations actually worsen performance. We conclude with a discussion of possible causes of these results and strategies for more effective learning in domains with objects.
182

Shape Recipes: Scene Representations that Refer to the Image

Freeman, William T., Torralba, Antonio 01 September 2002 (has links)
The goal of low-level vision is to estimate an underlying scene, given an observed image. Real-world scenes (e.g., albedos or shapes) can be very complex, conventionally requiring high dimensional representations which are hard to estimate and store. We propose a low-dimensional representation, called a scene recipe, that relies on the image itself to describe the complex scene configurations. Shape recipes are an example: these are the regression coefficients that predict the bandpassed shape from bandpassed image data. We describe the benefits of this representation, and show two uses illustrating their properties: (1) we improve stereo shape estimates by learning shape recipes at low resolution and applying them at full resolution; (2) Shape recipes implicitly contain information about lighting and materials and we use them for material segmentation.
183

The Role of Programming in the Formulation of Ideas

Sussman, Gerald Jay, Wisdom, Jack 01 November 2002 (has links)
Classical mechanics is deceptively simple. It is surprisingly easy to get the right answer with fallacious reasoning or without real understanding. To address this problem we use computational techniques to communicate a deeper understanding of Classical Mechanics. Computational algorithms are used to express the methods used in the analysis of dynamical phenomena. Expressing the methods in a computer language forces them to be unambiguous and computationally effective. The task of formulating a method as a computer-executable program and debugging that program is a powerful exercise in the learning process. Also, once formalized procedurally, a mathematical idea becomes a tool that can be used directly to compute results.
184

A Robust Amorphous Hierarchy from Persistent Nodes

Beal, Jacob 01 May 2003 (has links)
For a very large network deployed in space with only nearby nodes able to talk to each other, we want to do tasks like robust routing and data storage. One way to organize the network is via a hierarchy, but hierarchies often have a few critical nodes whose death can disrupt organization over long distances. I address this with a system of distributed aggregates called Persistent Nodes, such that spatially local failures disrupt the hierarchy in an area proportional to the diameter of the failure. I describe and analyze this system, which has been implemented in simulation.
185

Permutation Tests for Classification

Mukherjee, Sayan, Golland, Polina, Panchenko, Dmitry 28 August 2003 (has links)
We introduce and explore an approach to estimating statistical significance of classification accuracy, which is particularly useful in scientific applications of machine learning where high dimensionality of the data and the small number of training examples render most standard convergence bounds too loose to yield a meaningful guarantee of the generalization ability of the classifier. Instead, we estimate statistical significance of the observed classification accuracy, or the likelihood of observing such accuracy by chance due to spurious correlations of the high-dimensional data patterns with the class labels in the given training set. We adopt permutation testing, a non-parametric technique previously developed in classical statistics for hypothesis testing in the generative setting (i.e., comparing two probability distributions). We demonstrate the method on real examples from neuroimaging studies and DNA microarray analysis and suggest a theoretical analysis of the procedure that relates the asymptotic behavior of the test to the existing convergence bounds.
186

Virtual Visual Hulls: Example-Based 3D Shape Estimation from a Single Silhouette

Grauman, Kristen, Shakhnarovich, Gregory, Darrell, Trevor 28 January 2004 (has links)
Recovering a volumetric model of a person, car, or other object of interest from a single snapshot would be useful for many computer graphics applications. 3D model estimation in general is hard, and currently requires active sensors, multiple views, or integration over time. For a known object class, however, 3D shape can be successfully inferred from a single snapshot. We present a method for generating a ``virtual visual hull''-- an estimate of the 3D shape of an object from a known class, given a single silhouette observed from an unknown viewpoint. For a given class, a large database of multi-view silhouette examples from calibrated, though possibly varied, camera rigs are collected. To infer a novel single view input silhouette's virtual visual hull, we search for 3D shapes in the database which are most consistent with the observed contour. The input is matched to component single views of the multi-view training examples. A set of viewpoint-aligned virtual views are generated from the visual hulls corresponding to these examples. The 3D shape estimate for the input is then found by interpolating between the contours of these aligned views. When the underlying shape is ambiguous given a single view silhouette, we produce multiple visual hull hypotheses; if a sequence of input images is available, a dynamic programming approach is applied to find the maximum likelihood path through the feasible hypotheses over time. We show results of our algorithm on real and synthetic images of people.
187

A Unified Statistical and Information Theoretic Framework for Multi-modal Image Registration

Zollei, Lilla, Fisher, John, Wells, William 28 April 2004 (has links)
We formulate and interpret several multi-modal registration methods in the context of a unified statistical and information theoretic framework. A unified interpretation clarifies the implicit assumptions of each method yielding a better understanding of their relative strengths and weaknesses. Additionally, we discuss a generative statistical model from which we derive a novel analysis tool, the "auto-information function", as a means of assessing and exploiting the common spatial dependencies inherent in multi-modal imagery. We analytically derive useful properties of the "auto-information" as well as verify them empirically on multi-modal imagery. Among the useful aspects of the "auto-information function" is that it can be computed from imaging modalities independently and it allows one to decompose the search space of registration problems.
188

How People Re-find Information When the Web Changes

Teevan, Jaime 18 June 2004 (has links)
This paper investigates how people return to information in a dynamic information environment. For example, a person might want to return to Web content via a link encountered earlier on a Web page, only to learn that the link has since been removed. Changes can benefit users by providing new information, but they hinder returning to previously viewed information. The observational study presented here analyzed instances, collected via a Web search, where people expressed difficulty re-finding information because of changes to the information or its environment. A number of interesting observations arose from this analysis, including that the path originally taken to get to the information target appeared important in its re-retrieval, whereas, surprisingly, the temporal aspects of when the information was seen before were not. While people expressed frustration when problems arose, an explanation of why the change had occurred was often sufficient to allay that frustration, even in the absence of a solution. The implications of these observations for systems that support re-finding in dynamic environments are discussed.
189

Towards Intelligent Structures: Active Control of Buckling

Berlin, Andrew A. 01 May 1994 (has links)
The buckling of compressively-loaded members is one of the most important factors limiting the overall strength and stability of a structure. I have developed novel techniques for using active control to wiggle a structural element in such a way that buckling is prevented. I present the results of analysis, simulation, and experimentation to show that buckling can be prevented through computer-controlled adjustment of dynamical behavior.sI have constructed a small-scale railroad-style truss bridge that contains compressive members that actively resist buckling through the use of piezo-electric actuators. I have also constructed a prototype actively controlled column in which the control forces are applied by tendons, as well as a composite steel column that incorporates piezo-ceramic actuators that are used to counteract buckling. Active control of buckling allows this composite column to support 5.6 times more load than would otherwise be possible.sThese techniques promise to lead to intelligent physical structures that are both stronger and lighter than would otherwise be possible.
190

The Proceedings of the First PHANToM User's Group Workshop

Salisbury, J. Kenneth, Srinivasan, Mandayam A. 01 December 1996 (has links)
These proceedings summarize the results of the First PHANToM User's Group Workshop held September 27-30, 1996 MIT. The goal of the workshop was to bring together a group of active users of the PHANToM Haptic Interface to discuss the scientific and engineering challenges involved in bringing haptics into widespread use, and to explore the future possibilities of this exciting technology. With over 50 attendees and 25 presentations the workshop provided the first large forum for users of a common haptic interface to share results and engage in collaborative discussions. Short papers from the presenters are contained herein and address the following topics: Research Effort Overviews, Displays and Effects, Applications in Teleoperation and Training, Tools for Simulated Worlds and, Data Visualization.

Page generated in 0.0263 seconds