1 |
臉書相片分類及使用者樣貌分析 / Identifying User Profile Using Facebook Photos.張婷雅, Chang,Ting Ya Unknown Date (has links)
除了文字訊息,張貼相片也是臉書使用者常用的功能,這些上傳的照片種類繁多,可能是自拍照、風景照、或食物照等等,本論文的研究以影像分析為出發點,探討相片內容跟發佈者間之關係,希望藉由相片獲得的資訊,輔助分析使用者樣貌。
本研究共收集32位受測者上傳至臉書的相片,利用電腦視覺技術分析圖像內容,如人臉偵測、環境識別、找出影像上視覺顯著的區域等,藉由這些工具所提供的資訊,將照片加註標籤,以及進行自動分類,並以此兩個層次的資訊做為特徵向量,利用階層式演算法進行使用者分群,再根據實驗結果去分析每一群的行為特性。
透過此研究,可對使用者進行初步分類、瞭解不同的使用者樣貌,並嘗試回應相關問題,如使用者所張貼之相片種類統計、不同性別使用者的上傳行為、 依據上傳圖像內容,進行使用者樣貌分類等,深化我們對於臉書相片上傳行為的理解。 / Apart from text messages, photo posting is a popular function of Facebook. The uploaded photos are of various nature, including selfie, outdoor scenes, and food. In this thesis, we employ state-of-the-art computer vision techniques to analyze image content and establish the relationship between user profile and the type of photos posted.
We collected photos from 32 Facebook users. We then applied techniques such as face detection, scene understanding and saliency map identification to gather information for automatic image tagging and classification. Grouping of users can be achieved either by tag statistics or photo classes. Characteristics of each group can be further investigated based on the results of hierarchical clustering.
We wish to identify profiles of different users and respond to questions such as the type of photos most frequently posted, gender differentiation in photo posting behavior and user classification according to image content, which will promote our understanding of photo uploading activities on Facebook.
|
Page generated in 0.0147 seconds