Spelling suggestions: "subject:"used behavior analysis"" "subject:"use behavior analysis""
1 |
A context-aware system to predict user's intention on smartphone based on ECA ModelLee, Ko-han 21 August 2012 (has links)
With the development of artificial intelligence , the application of recommender systems has been extended to fields such as e-commerce shopping cart analysis or video recommendation system. These systems provide user a recommended resource set based on their habits or behavior patterns to help users saving searching cost. However, these techniques have not been successfully adopted to help users search functions on smart-phones more efficiency. This research is designated to build the context-aware system, which can generate the list of operations predicting which function user might use under certain contexts through continuously learning users operation patterns and related device perceived scenario. The system utilize event-condition-action patterns to describe user frequent behaviors, and the research will focus on developing innovative Action-Condition-Fit algorithm to figure the similarity between action pattern sets and real-time scenario. Proposed system and algorithm will then be built on Google App Engine and Android device to empirically validate its performance through field test.
|
2 |
Analýza anomálií v uživatelském chování / User Behavior Anomaly DetectionPetrovič, Lukáš January 2019 (has links)
The aim of this work is to create an application that allows modeling of user behavior and subsequent search for anomalies in this behavior. An application entry is a list of actions the user has executed on his workstation. From this information and from information about the events that occurred on this device the behavioral model for a specific time is created. Subsequently, this model is compared to models in different time periods or with other users' models. From this comparison, we can get additional information about user behavior and also detect anomalous behavior. The information about the anomalies is useful to build security software that prevents valuable data from being stolen (from the corporate enviroment).
|
3 |
Mining user behavior in location-based social networks / Mineração do comportamento de usuários em redes sociais baseadas em localizaçãoRebaza, Jorge Carlos Valverde 18 August 2017 (has links)
Online social networks (OSNs) are Web platforms providing different services to facilitate social interaction among their users. A particular kind of OSNs is the location-based social network (LBSN), which adds services based on location. One of the most important challenges in LBSNs is the link prediction problem. Link prediction problem aims to estimate the likelihood of the existence of future friendships among user pairs. Most of the existing studies in link prediction focus on the use of a single information source to perform predictions, i.e. only social information (e.g. social neighborhood) or only location information (e.g. common visited places). However, some researches have shown that the combination of different information sources can lead to more accurate predictions. In this sense, in this thesis we propose different link prediction methods based on the use of different information sources naturally existing in these networks. Thus, we propose seven new link prediction methods using the information related to user membership in social overlapping groups: common neighbors within and outside of common groups (WOCG), common neighbors of groups (CNG), common neighbors with total and partial overlapping of groups (TPOG), group naïve Bayes (GNB), group naïve Bayes of common neighbors (GNB-CN), group naïve Bayes of Adamic-Adar (GNB-AA) and group naïve Bayes of Resource Allocation (GNB-RA). Due to that social groups exist naturally in networks, our proposals can be used in any type of OSN.We also propose new eight link prediction methods combining location and social information: Check-in Observation (ChO), Check-in Allocation (ChA), Within and Outside of Common Places (WOCP), Common Neighbors of Places (CNP), Total and Partial Overlapping of Places (TPOP), Friend Allocation Within Common Places (FAW), Common Neighbors of Nearby Places (CNNP) and Nearby Distance Allocation (NDA). These eight methods are exclusively for work in LBSNs. Obtained results indicate that our proposals are as competitive as state-of-the-art methods, or better than they in certain scenarios. Moreover, since our proposals tend to be computationally more efficient, they are more suitable for real-world applications. / Redes sociais online (OSNs) são plataformas Web que oferecem serviços para promoção da interação social entre usuários. OSNs que adicionam serviços relacionados à geolocalização são chamadas redes sociais baseadas em localização (LBSNs). Um dos maiores desafios na análise de LBSNs é a predição de links. A predição de links refere-se ao problema de estimar a probabilidade de conexão futura entre pares de usuários que não se conhecem. Grande parte das pesquisas que focam nesse problema exploram o uso, de maneira isolada, de informações sociais (e.g. amigos em comum) ou de localização (e.g. locais comuns visitados). Porém, algumas pesquisas mostraram que a combinação de diferentes fontes de informação pode influenciar o incremento da acurácia da predição. Motivado por essa lacuna, neste trabalho foram desenvolvidos diferentes métodos para predição de links combinando diferentes fontes de informação. Assim, propomos sete métodos que usam a informação relacionada à participação simultânea de usuários en múltiples grupos sociais: common neighbors within and outside of common groups (WOCG), common neighbors of groups (CNG), common neighbors with total and partial overlapping of groups (TPOG), group naïve Bayes (GNB), group naïve Bayes of common neighbors (GNB-CN), group naïve Bayes of Adamic-Adar (GNB-AA), e group naïve Bayes of Resource Allocation (GNB-RA). Devido ao fato que a presença de grupos sociais não está restrita a alguns tipo de redes, essas propostas podem ser usadas nas diversas OSNs existentes, incluindo LBSNs. Também, propomos oito métodos que combinam o uso de informações sociais e de localização: Check-in Observation (ChO), Check-in Allocation (ChA), Within and Outside of Common Places (WOCP), Common Neighbors of Places (CNP), Total and Partial Overlapping of Places (TPOP), Friend Allocation Within Common Places (FAW), Common Neighbors of Nearby Places (CNNP), e Nearby Distance Allocation (NDA). Tais propostas são para uso exclusivo em LBSNs. Os resultados obtidos indicam que nossas propostas são tão competitivas quanto métodos do estado da arte, podendo até superá-los em determinados cenários. Ainda mais, devido a que na maioria dos casos nossas propostas são computacionalmente mais eficientes, seu uso resulta mais adequado em aplicações do mundo real.
|
4 |
電子書閱讀器之使用者行為資料分析 / Analysis and Interpretation of E-reader User Log闕建堡, Chueh, Chien Pao Unknown Date (has links)
由於資訊科技與顯示技術的大幅進步,電子書閱讀裝置成為近來十分受矚目的產品,然綜觀目前國內外電子書的發展,多以較具消費能力的上班族為對象,較少以基礎教育的學生為目標使用者。
本研究針對使用於教育市場的電子書閱讀器進行前導性的實驗,並透過自行設計的使用者介面、數位學習平台及結合傳統問卷與自動化使用者行為蒐集程式,結合質化研究與量化分析的優點,以瞭解最真實的學生使用習慣與方式。
本研究目的在於探索電子書閱讀器進入高中學生的實際課堂學習與日常生活之中,對學生的學習經驗或閱讀習慣所產生之影響,並進一步瞭解從學生最初接觸電子書的新鮮試用期,到後續逐漸習慣使用或棄用電子書等不同階段的行為變化。透過此研究,瞭解電子書閱讀器應用於教育市場的接受程度及可能潛力,做為未來電子書設計、開發與推廣使用的可行性參考依據。 / Recently, e-book reading devices based on electronic ink (e-ink) have gained a lot of attention thanks to the rapid advances in both information and display technology. However, current products are mainly targeted on general users for their daily reading activities. Research on introducing the e-reading device into high school or college campuses has commenced only quite recently.
In this thesis, we exploit the potential of employing e-book reading devices in facilitating learning in a high school campus. We have custom-designed the user interface as well as the textbook content to suit the needs of this particular user group. The unique opportunity of having access to the hardware device, software design and potential users creates an ideal experimental platform for us to unbiasedly investigate the role of this new technology through a long-term user behavior collection and analysis process.
This study aims to explore how the introduction of e-book reader into high school campus influences the students’ learning and daily life. We documented changes in the users’ e-book reading behavior during the course of a six-month experiment, corresponding to progressive stages of growing familiarity and comfort with using the machine. We found that e-book reader does help the students to develop a habit of mobile reading. Its effect exceeds our expectation of achieving digital learning. We hope that the findings presented in this thesis can be useful to teachers and system designers to develop new types of teaching materials and activities by taking advantages of the characteristics of this new technology.
|
5 |
Mining user behavior in location-based social networks / Mineração do comportamento de usuários em redes sociais baseadas em localizaçãoJorge Carlos Valverde Rebaza 18 August 2017 (has links)
Online social networks (OSNs) are Web platforms providing different services to facilitate social interaction among their users. A particular kind of OSNs is the location-based social network (LBSN), which adds services based on location. One of the most important challenges in LBSNs is the link prediction problem. Link prediction problem aims to estimate the likelihood of the existence of future friendships among user pairs. Most of the existing studies in link prediction focus on the use of a single information source to perform predictions, i.e. only social information (e.g. social neighborhood) or only location information (e.g. common visited places). However, some researches have shown that the combination of different information sources can lead to more accurate predictions. In this sense, in this thesis we propose different link prediction methods based on the use of different information sources naturally existing in these networks. Thus, we propose seven new link prediction methods using the information related to user membership in social overlapping groups: common neighbors within and outside of common groups (WOCG), common neighbors of groups (CNG), common neighbors with total and partial overlapping of groups (TPOG), group naïve Bayes (GNB), group naïve Bayes of common neighbors (GNB-CN), group naïve Bayes of Adamic-Adar (GNB-AA) and group naïve Bayes of Resource Allocation (GNB-RA). Due to that social groups exist naturally in networks, our proposals can be used in any type of OSN.We also propose new eight link prediction methods combining location and social information: Check-in Observation (ChO), Check-in Allocation (ChA), Within and Outside of Common Places (WOCP), Common Neighbors of Places (CNP), Total and Partial Overlapping of Places (TPOP), Friend Allocation Within Common Places (FAW), Common Neighbors of Nearby Places (CNNP) and Nearby Distance Allocation (NDA). These eight methods are exclusively for work in LBSNs. Obtained results indicate that our proposals are as competitive as state-of-the-art methods, or better than they in certain scenarios. Moreover, since our proposals tend to be computationally more efficient, they are more suitable for real-world applications. / Redes sociais online (OSNs) são plataformas Web que oferecem serviços para promoção da interação social entre usuários. OSNs que adicionam serviços relacionados à geolocalização são chamadas redes sociais baseadas em localização (LBSNs). Um dos maiores desafios na análise de LBSNs é a predição de links. A predição de links refere-se ao problema de estimar a probabilidade de conexão futura entre pares de usuários que não se conhecem. Grande parte das pesquisas que focam nesse problema exploram o uso, de maneira isolada, de informações sociais (e.g. amigos em comum) ou de localização (e.g. locais comuns visitados). Porém, algumas pesquisas mostraram que a combinação de diferentes fontes de informação pode influenciar o incremento da acurácia da predição. Motivado por essa lacuna, neste trabalho foram desenvolvidos diferentes métodos para predição de links combinando diferentes fontes de informação. Assim, propomos sete métodos que usam a informação relacionada à participação simultânea de usuários en múltiples grupos sociais: common neighbors within and outside of common groups (WOCG), common neighbors of groups (CNG), common neighbors with total and partial overlapping of groups (TPOG), group naïve Bayes (GNB), group naïve Bayes of common neighbors (GNB-CN), group naïve Bayes of Adamic-Adar (GNB-AA), e group naïve Bayes of Resource Allocation (GNB-RA). Devido ao fato que a presença de grupos sociais não está restrita a alguns tipo de redes, essas propostas podem ser usadas nas diversas OSNs existentes, incluindo LBSNs. Também, propomos oito métodos que combinam o uso de informações sociais e de localização: Check-in Observation (ChO), Check-in Allocation (ChA), Within and Outside of Common Places (WOCP), Common Neighbors of Places (CNP), Total and Partial Overlapping of Places (TPOP), Friend Allocation Within Common Places (FAW), Common Neighbors of Nearby Places (CNNP), e Nearby Distance Allocation (NDA). Tais propostas são para uso exclusivo em LBSNs. Os resultados obtidos indicam que nossas propostas são tão competitivas quanto métodos do estado da arte, podendo até superá-los em determinados cenários. Ainda mais, devido a que na maioria dos casos nossas propostas são computacionalmente mais eficientes, seu uso resulta mais adequado em aplicações do mundo real.
|
6 |
臉書相片分類及使用者樣貌分析 / Identifying User Profile Using Facebook Photos.張婷雅, Chang,Ting Ya Unknown Date (has links)
除了文字訊息,張貼相片也是臉書使用者常用的功能,這些上傳的照片種類繁多,可能是自拍照、風景照、或食物照等等,本論文的研究以影像分析為出發點,探討相片內容跟發佈者間之關係,希望藉由相片獲得的資訊,輔助分析使用者樣貌。
本研究共收集32位受測者上傳至臉書的相片,利用電腦視覺技術分析圖像內容,如人臉偵測、環境識別、找出影像上視覺顯著的區域等,藉由這些工具所提供的資訊,將照片加註標籤,以及進行自動分類,並以此兩個層次的資訊做為特徵向量,利用階層式演算法進行使用者分群,再根據實驗結果去分析每一群的行為特性。
透過此研究,可對使用者進行初步分類、瞭解不同的使用者樣貌,並嘗試回應相關問題,如使用者所張貼之相片種類統計、不同性別使用者的上傳行為、 依據上傳圖像內容,進行使用者樣貌分類等,深化我們對於臉書相片上傳行為的理解。 / Apart from text messages, photo posting is a popular function of Facebook. The uploaded photos are of various nature, including selfie, outdoor scenes, and food. In this thesis, we employ state-of-the-art computer vision techniques to analyze image content and establish the relationship between user profile and the type of photos posted.
We collected photos from 32 Facebook users. We then applied techniques such as face detection, scene understanding and saliency map identification to gather information for automatic image tagging and classification. Grouping of users can be achieved either by tag statistics or photo classes. Characteristics of each group can be further investigated based on the results of hierarchical clustering.
We wish to identify profiles of different users and respond to questions such as the type of photos most frequently posted, gender differentiation in photo posting behavior and user classification according to image content, which will promote our understanding of photo uploading activities on Facebook.
|
7 |
Profiling professional and regular users on popular Internet services based on implementation of large scale Internet measurement tools / Profilage d'usagers professionnels et non-professionnels de services Internet basés sur l'implémentation d'outils de mesure Internet à grande échelleFarahbakhsh, Reza 21 May 2015 (has links)
Les services Internet populaires modèlent et remodèlent fondamentalement les moyens traditionnels de communication des personnes, ayant ainsi un impact majeur sur leur vie sociale. Deux des services Internet très populaires avec cette caractéristique sont les Réseaux sociaux en ligne (OSN) et les systèmes Peer-to-Peer (P2P). Les ONS fournissent un environnement virtuel où les gens peuvent partager leurs informations et leurs intérêts tout en étant en contact avec d'autres personnes. D'autre part, les systèmes P2P, qui sont toujours l'un des services populaires avec une grande proportion de l'ensemble du trafic Internet, offrent une occasion en or pour leurs clients de partager un type de contenu différent, y compris le contenu protégé. En dehors de l'énorme popularité des ONS et des systèmes de P2P parmi les utilisateurs réguliers, ils sont intensivement utilisés par les professionnels (grandes entreprises, politiciens, athlètes, célébrités en cas d'ONS et éditeurs de contenu professionnels en cas de P2P) afin d'interagir avec les gens à des fins différentes (campagnes marketing, les commentaires des clients, amélioration de la réputation publique, etc.) Dans cette thèse, nous caractérisons le comportement des utilisateurs réguliers et professionnels dans les deux services mentionnés populaires (ONS et P2P) en termes de stratégies de publication, de consommation de contenu et d'analyse comportementale. À cette fin, cinq de nos études menées sont présentées dans ce manuscrit comme suit: - "L'évolution des contenus multimédias", qui présente une analyse approfondie sur l'évolution du contenu multimédia disponible en BitTorrent en se concentrant sur quatre mesures pertinentes à travers différentes catégories de contenu : la disponibilité du contenu, la popularité du contenu, la taille de contenu et les commentaires de l'utilisateur - "La réaction des utilisateurs professionnels face aux actions de lutte contre le piratage", en examinant l'impact de deux grandes actions de lutte contre le piratage - la fermeture de Megaupload et la mise en œuvre de la loi anti-piratage française (HADOPI) - sur le comportement des publicateurs professionnels dans le plus grand portail de BitTorrent qui sont les principaux fournisseurs de contenu en ligne protégé. - "La quantité d'informations divulguées sur Facebook", en enquêtant sur l'exposition publique des profils utilisateurs, une grande base de données comprenant un demi-million d'utilisateurs réguliers. - "Les utilisateurs professionnels Cross Posting Activity», en analysant le modèle de publication des utilisateurs professionnels de mêmes informations sur trois grands ONS à savoir Facebook, Google+ et Twitter. - "Les stratégies des utilisateurs professionnels dans les ONS", où nous étudions la stratégie globale d'utilisateurs professionnels par secteur (par exemple, les entreprises de voitures, l'habillement, politiques, etc.) sur Facebook, Google+ et Twitter. Les résultats de cette thèse fournissent une vision d'ensemble pour comprendre certains aspects comportementaux importants de différents types d'utilisateurs des services Internet populaires et ces contributions peuvent être utilisées dans divers domaines (par exemple analyse de campagne marketing et publicité, etc.) et les différentes parties peuvent bénéficier des résultats et des méthodologies mises en œuvre telles que les FAI et les propriétaires des services pour leur planification ou l'expansion des services actuels à venir, ainsi que les professionnels pour accroître leur succès sur les médias sociaux / Popular Internet services are fundamentally shaping and reshaping traditional ways of people communication, thus having a major impact on their social life. Two of the very popular Internet services with this characteristic are Online Social Networks (OSNs) and Peer-to-Peer (P2P) systems. OSNs provide a virtual environment where people can share their information and interests as well as being in contact with other people. On the other hand, P2P systems, which are still one of the popular services with a large proportion of the whole Internet traffic, provide a golden opportunity for their customers to share different type of content including copyrighted content. Apart from the huge popularity of OSNs and P2P systems among regular users, they are being intensively used by professional players (big companies, politician, athletes, celebrities in case of OSNs and professional content publishers in case of P2P) in order to interact with people for different purposes (marketing campaigns, customer feedback, public reputation improvement, etc.). In this thesis, we characterize the behavior of regular and professional users in the two mentioned popular services (OSNs and P2P systems) in terms of publishing strategies, content consumption and behavioral analysis. To this end, five of our conducted studies are presented in this manuscript as follows: - “The evolution of multimedia contents", which presents a thorough analysis on the evolution of multimedia content available in BitTorrent by focusing on four relevant metrics across different content categories: content availability, content popularity, content size and user's feedback. - “The reaction of professional users to antipiracy actions", by examining the impact of two major antipiracy actions, the closure of Megaupload and the implementation of the French antipiracy law (HADOPI), on professional publishers behavior in the largest BitTorrent portal who are major providers of online copyrighted content. - “The amount of disclosed information on Facebook", by investigating the public exposure of Facebook users' profile attributes in a large dataset including half million regular users. - “Professional users Cross Posting Activity", by analyzing the publishing pattern of professional users which includes same information over three major OSNs namely Facebook, Google+ and Twitter. - “Professional Users' Strategies in OSNs", where we investigate the global strategy of professional users by sector (e.g., Cars companies, Clothing companies, Politician, etc.) over Facebook, Google+ and Twitter. The outcomes of this thesis provide an overall vision to understand some important behavioral aspects of different types of users on popular Internet services and these contributions can be used in various domains (e.g. marketing analysis and advertising campaign, etc.) and different parties can benefit from the results and the implemented methodologies such as ISPs and owners of the Services for their future planning or expansion of the current services as well as professional players to increase their success on social media
|
Page generated in 0.4103 seconds