1 |
共變異數矩陣估計方法 對效率前緣與投資組合之影響 / The Impact of Estimating Covariance Matrix on Efficient Frontier and Investment Portfolio葉冠廷 Unknown Date (has links)
1952年Markowitz 提出平均數-變異數投資組合模型(Mean-Variance Model,簡稱MV 模型)後,開創了投資組合理論的先河,他認為風險與報酬是影響資產配置的兩大因素,其中Markowitz在估計共變異數矩陣時,使用樣本共變異數矩陣模型(Sample Covariance Model)做運算。雖然MV 模型具權威性,但仍存在估計誤差的問題,因此許多共變異數矩陣的估計方法應運而生,包括Litterman and Winklemann(1998)的高盛衰退率共變異數矩陣模型以及Ledoit and Wolf(2003)的單一指數濃縮估計法。本文比較各種共變異數矩陣的效率前緣(efficient frontier);並採用全域最小變異組合(Global Minimum Variance Point),檢驗樣本共變異數矩陣模型、高盛衰退率共變異數矩陣模型及單一指數濃縮估計法所建構的投資組合,其績效是否優於市值加權的台灣50指數;且以滾動視窗(rolling window)方式,比較三種方法績效之異同優劣。本研究實證結果顯示三種方法相對於大盤均有較佳表現,各方法間則以單一指數濃縮估計法表現較佳。 / Markowitz indicated Mean-Variance Model and initiated the portfolio theory in 1952. He proved that risk and return are two important components to impact on asset allocation, and used sample covariance model to calculate covariance matrix. However, MV model exists estimation error. Therefore, many covariance matrix methods was proposed including Goldman Sachs decay rate covariance matrix model of Litterman and Winklemann(1998), and shrinkage to single-index covariance matrix method of Ledoit and Wolf(2003). This study compares the efficient frontier build by different covariance matrix methods. Also, this study adopts global minimum portfolio and rolling window to discuss performance of portfolio constructed by these three methods. The conclusion is that the performance of portfolio constructed by these three covariance matrix methods is better than market index, and shrinkage to single-index covariance matrix is the best method to construct portfolio.
|
2 |
市場風險因子情境產生方法之研究 / Methodology for Risk Factors Scenario Generation陳育偉, Chen,Yu-Wei Unknown Date (has links)
由於金融事件層出不窮,控管風險已成為銀行、證券、保險各種金融產業的重要課題。其中Value-at-Risk(VaR)模型為銀行與證券業最常用來衡量其市場風險的模型。VaR模型中的蒙地卡羅模擬法是將投資組合持有部位以適當的市場風險因子來表示,接著產生市場風險因子的各種情境,再結合評價公式以求得投資組合在某一段持有期間內、某一信心水準之下的最低價值,再將最低價值減去原來之價值,便為可能的最大損失(Jorion, 2007)。 / 使用蒙地卡羅模擬法產生市場風險因子的各種情境,必須先估計市場風險因子的共變異數矩陣,再藉此模擬出數千種市場風險因子情境。本研究便是將蒙地卡羅模擬法加入隨著時間改變之共變異數矩陣(time-varying covariance matrix)的概念並減少市場風險因子個數,利用蒙地卡羅模擬法配合Constant模型、UWMA模型、EWMA模型、Orthogonal EWMA模型、Orthogonal GARCH模型、PCA EWMA模型、PCA GARCH模型來產生市場風險因子未來的情境並比較各方法對長天期與短天期風險衡量之優劣。結果顯示PCA EWMA模型的效果最好,因此建議各大金融機構可採用PCA EWMA模型來控管其投資組合短天期與長天期的市場風險。
|
Page generated in 0.0221 seconds