1 |
以資料採礦方法探討國內數位落差之現象 / Effect of Digital Divide in Taiwan: Data Mining Applications林建宇, Lin,chien yu Unknown Date (has links)
全球化時代與資訊化社會的來臨,電腦與網際網路成為生活中不可或缺的要素,儘管至2008年為止,我國有將近七成的民眾透過網路科技享受到更多的便利性,但社會上仍存在著數位落差(digital divide)的問題,數位落差除了使得資訊窮人(information-poor)不易取得資訊,亦將對其經濟、人權等各方面造成影響。故研究目的在利用資料採礦的應用,配合SPSS Clementine 12.0的軟體,探討數位落差的現象,並嘗試找出形成數位落差的影響原因。
本研究主要投入人口統計變數以及生活型態變數,並藉由C5.0決策樹、C&RT分類樹,以及CHAID分類樹建立模型,透過這三個分類迴歸樹的模型,發現到「年齡」、「教育程度」、「地理區域」、「個人資產狀況」、「經濟主要來源:子女」、「個人每月可支配所得」以及「收入來源:薪資」共七項變數同時對民眾是否成為數位落差中的資訊富人(information-rich)有著較重要的影響性,因此,研究最後依據此七項進行政策建議,以提供相關單位之參考。 / In this globalized and informational society, computers and internet networks are essential elements in our daily lives. Until the year 2008, almost 70% of population in Taiwan has enjoyed greater conveniences through networking technologies. However, the issue of “digital divide” remains, where information-poor cannot obtain information easily, and the issue affects the society in terms of economies and human rights. Consequently, the purpose of this research is aimed to find the reasons behind “digital divide” using data-mining techniques with SPSS Clementine 12.0 statistical software.
The research will input demographic variables and life-style variables. Using C5.0 decision tree, C&RT tree, and CHAID methodologies to build model, and subsequently discovers that whether the 7 variables - “age”, “level of education”, “location”, “personal asset status”, “main source of income: children”, “monthly personal disposal income” and “source of income: salary” will have significant impacts on information-rich population within “digital divide”. Therefore, the research recommendations will be provided according to the results from these 7 variables.
|
2 |
應用遺傳規劃法於知識管理流程之知識擷取和整合機制 / GP-Based Knowledge Acquisition and Integration Mechanisms in Knowledge Management Processes郭展盛, Kuo,Chan Sheng Unknown Date (has links)
在目前的企業環境中,很多企業致力於管理和應用組織知識,來維持他們的核心能力和創造競爭優勢。有效率的管理組織知識,能減少解決問題的時間和成本,並增加組織學習和創新能力。並且,由於累積知識資源的需求,很多企業開始發展知識庫,以儲存組織及個人的知識,用來增加組織整體的效率、支援日常的運作以及企業策略的操作。
知識管理是現代的典範,可用來有效管理組織知識,進而改善組織績效。知識管理的目的是強調管理知識的流動及流程。在知識管理流程方面,主要區分為知識擷取、整合、儲存/歸類、散播和應用知識等程序。另外,資訊技術可用來協助知識管理,並能使知識管理更有效率。知識管理的主要議題之ㄧ是知識的擷取,由於目前知識來源的提供,主要是透過知識工作者,可是它對於知識工作者而言,是一種額外的負擔。因此,設計一個有效的方法來自動產生組織知識,以減輕他們的額外負擔,將是一個很重要的課題。第二個相當重要的議題是知識整合,由於不同來源的知識,可能造成組織知識的衝突,因此設計一個知識整合方法,把不同來源的知識整合成一個完整的知識,組織將會逐漸增加這方面的需求。
分類在很多應用中是常遭遇的問題,例如財務預測、疾病診斷等。在過去,分類規則常藉由決策樹的方法所產生,並用於解決分類的問題。在本論文中,提出兩個以遺傳規劃為基礎的知識擷取方法和兩個以遺傳規劃為基礎的知識整合方法,分別支援知識管理流程中的知識擷取和知識整合。
在兩個所提的知識擷取方法中,第一個方法是著重在快速和容易地找到想要的分類樹,但是,此方法可能會產生結構較複雜的分類樹。第二個方法是修正第一個方法,產生一個較精簡和應用性高的分類樹。這些所獲得的分類樹,能被轉換成規則集合,並匯入知識庫中,幫助企業決策的制定和日常的運作。
此外,在兩個所提的知識整合方法中,第一個方法,能自動結合多重的知識來源成為一個整合的知識,並可匯入知識庫中,但是此方法只考慮到單一時間點的整合。第二個方法則是可以解決不同時間點的知識整合問題。另外,本論文提出三個新的遺傳運算子,在演化過程中,可用來解決規則集合中有重複、包含和衝突等常見的問題,因而可以產生較精簡及一致性高的分類規則。最後,本論文採用信用卡資料及乳癌資料來驗證所提方法的可行性,實驗結果皆獲得良好的成效。 / In today’s business environment, many enterprises make efforts in managing and applying organizational knowledge to sustain their core competence and create competitive advantage. The effective management of organizational knowledge can reduce the time and cost of solving problems, improve organizational performance, and increase organizational learning as well as innovative competence. Moreover, due to the need to accumulate knowledge resources, many enterprises have devoted to developing their knowledge repositories. These repositories store organizational and individual knowledge that are used to increase overall organization efficiency, support daily operations, and implement business strategies.
Knowledge management (KM) is the modern paradigm for effective management of organizational knowledge to improve organizational performance. The intent of KM is to emphasize knowledge flows and the main process of acquisition, integration, storage/categorization, dissemination, and application. Furthermore, extant information technologies can provide a way of enabling more effective knowledge management. One of the important issues in knowledge management is knowledge acquisition. It is an extra burden for knowledge workers to contribute their knowledge into repositories, such that designing an effective method for abating an extra burden to automatically generate organizational knowledge will play a critical role in knowledge management. A second rather important issue in knowledge management is knowledge integration from different knowledge sources. Designing a knowledge-integration method to combine multiple knowledge sources will gradually become a necessity for enterprises.
Classification problems, such as financial prediction and disease diagnosis, are often encountered in many applications. In the past, classification trees were often generated by decision-tree methods and commonly used to solve classification problems. In this dissertation, we propose two GP-based knowledge-acquisition methods and two GP-based knowledge-integration methods to support knowledge acquisition and knowledge integration respectively in the knowledge management processes for classification tasks.
In the two proposed knowledge-acquisition methods, the first one is fast and easy to find the desired classification tree. It may, however, generate a complicated classification tree. The second method then further modifies the first method and produces a more concise and applicatory classification tree than the first one. The classification tree obtained can be transferred into a rule set, which can then be fed into a knowledge base to support decision making and facilitate daily operations.
Furthermore, in the two proposed knowledge-integration methods, the former method can automatically combine multiple knowledge sources into one integrated knowledge base; nevertheless, it focuses on a single time point to deal with such knowledge-integration problems. The latter method then extends the former one to handle integrating situations properly with different time points. Additionally, three new genetic operators are designed in the evolving process to remove redundancy, subsumption and contradiction, thus producing more concise and consistent classification rules than those without using them.
Finally, the proposed methods are applied to credit card data and breast cancer data for evaluating their effectiveness. They are also compared with several well-known classification methods. The experimental results show the good performance and feasibility of the proposed approaches.
|
Page generated in 0.0207 seconds