• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

抽樣調查中關於缺失資料之各種補齊法性質之研究

楊淑蘭, YANG, SHU-LAN Unknown Date (has links)
由於時代的急速變遷,人們所面臨的問題日趨複雜。在有限的人力與財力限制之下, 欲對目標母體(TARGET POPULATION ),作一詳細的調查與研究通 常是不可能的, 因此如何藉由抽樣方法從母體中抽取具有代表性的樣本是重要的。在抽樣調查的過程 中我們常常發現樣本回收率沒有原來預期的高,若我們只用回收的樣本去做資料分析 ,常常使我們做成的結果是偏誤(BIASED)。本文的目的即在針對此一問題,做一深 入的研究探討。 抽樣調查中無觀測值(NONOBSERVATION)通常有三種情況發生: (1)未包括的範圍(NONCOVERAGE ),(2)未回收(TOTAL NONRESPONSE )(3 )回答不完全(ITEM NONRESPONSE)。吾人針對回答不完全。使用插補法(IMPUTATI O )予以研究,即是對於缺失資料的項目依據種插補法給定一些值,使回收的資料具 完整性,以利資料的分析利用。 在日常生活中經常會遇到斤欲研究變數Y 與其另一輔助變數X 有某種線性關係存在。 例如農作物產量與種植面積、家庭收入與家庭支出、1980年全市人口總數與19 70年全市人口總數等。為方便研究起見,首先假設一簡單的線性迴歸模式: y I = β × I+εI εI ∼ i.i.d.N(O.σ□) 在上式中,若(XI,yI) i=1,2,……n 為一完整的資料集,即n 個隨機樣本(X I,yI )皆無缺失值,則β與σ□的最小平方估計式可以很快求出,現在假設y 值有 部份缺失值,則必須想辨法把缺失的 值補齊,才能進一步研究β與σ□的性質,本 文即針對下列六種插補法。(a )平均插補法(MO)、(b )隨機插補法(RO)、( C )分層平均 插補法(MC)、(d )分層隨機插補法(RC)、(e )簡單迴歸插補法(RG)及(f )隨機迴歸插補法(RRS,RRN),根據所建立的模式,運用各種不同的插補法將缺失 值予以補齊後,對模式結果作理論的探討,並對各種插補法作綜合分析比較。 最後利用其理論結果,配合1986年美國零售交易普查資料作實證研究,並分析其 實結果。
2

變數遺漏值的多重插補應用於條件評估法 / Multiple imputation for missing covariates in contingent valua-tion survey

費詩元, Fei, Shih Yuan Unknown Date (has links)
多數關於願付價格(WTP)之研究中,遺漏資料通常被視為完全隨機遺漏(MCAR)並刪除之。然而,研究中的某些重要變數若具有過高的遺漏比例時,則可能造成分析上的偏誤。 收入在許多條件評估(Contingent Valuation)調查中經常扮演著一個重要的角色,同時其也是受訪者最傾向於遺漏的變項之一。在這份研究中,我們將透過模擬的方式來評估多重插補法(Multiple Imputa- tion) 於插補願付價格調查中之遺漏收入之表現。我們考慮三種資料情況:刪除遺漏資料後所剩餘之完整資料、一次插補資料、以及多重插補資料,針對這三種情況,藉由三要素混合模型(Three-Component Mixture Model)所進行之分析來評估其優劣。模擬結果顯示,多重插補法之分析結果優於僅利用刪除遺漏資料所剩餘之完整資料進行分析之結果,並且隨著遺漏比例上升,其優劣更是明顯。我們也發現多重插補法之結果也比起一次插補來的更加可靠、穩定。因此如果資料遺漏機制非完全隨機遺漏之機制時,我們認為多重插補法是一個值得信任且表現不錯的處理方法。 此外,文中也透過「竹東及朴子地區心臟血管疾病長期追蹤研究」(Cardio Vascular Disease risk FACtor Two-township Study,簡稱CVDFACTS) 之資料來進行實證分析。文中示範一些評估遺漏機制的技巧,包括比較存活曲線以及邏輯斯迴歸。透過實證分析,我們發現插補前後的確造成模型分析及估計上的差異。 / Most often, studies focus on willingness to pay (WTP) simply ignore the missing values and treat them as if they were missing completely at random. It is well-known that such a practice might cause serious bias and lead to incorrect results. Income is one of the most influential variables in CV (contingent valuation) study and is also the variable that respondents most likely fail to respond. In the present study, we evaluate the performance of multiple imputation (MI) on missing income in the analysis of WTP through a series of simulation experiments. Several approaches such as complete-case analysis, single imputation, and MI are considered and com-pared. We show that performance with MI is always better than complete-case analy-sis, especially when the missing rate gets high. We also show that MI is more stable and reliable than single imputation. As an illustration, we use data from Cardio Vascular Disease risk FACtor Two-township Study (CVDFACTS). We demonstrate how to determine the missing mechanism through comparing the survival curves and a logistic regression model fitting. Based on the empirical study, we find that discarding cases with missing in-come can lead to something different from that with multiple imputation. If the dis-carded cases are not missing complete at random, the remaining samples will be biased. That can be a serious problem in CV research. To conclude, MI is a useful method to deal with missing value problems and it should be worthwhile to give it a try in CV studies.
3

在缺失資料隨機散失的情形下, 各種插補法效用之研究

翁彰佑, WENG,ZHANG-YOU Unknown Date (has links)
吾人在抽樣調查訪問中, 經常會遇到資料缺失的情形。一般分析者常僅用有反應的部 分資料, 或使用各種不同的插補法先將資料補齊之后( 若資料分析者具有此統計專業 知識的話 )來進行分析, 因此可能造成使用相同的估計式(estimator) 卻獲得不一致 的結果。 在本文之中, 吾人討論: 當母體里的兩個變數, 具有簡單線性回歸之關系時, 其中一 個變數有缺失值, 并且資料的缺失是隨機散失的情形下, 今以七種不同之插補法( 平 均插補法(MO), 隨機插補法(RI), 分層平均插補法(MC), 分層隨機插補法(RC), 簡單 回歸插補法(RG), 隨機回歸插補法(RRS及RRN)) 將資料補齊后, 對於吾人所熟悉之一 些統計量( 例如:E(β ),E(β ),E(σ ),Var(β ),… 等),會有什么影響。同時也討 論了比較這些插補法之優劣的一些依據。最后我們利用其理論結果, 配合1986年美國 零售交易普查資料作實證分析, 并且以電腦來模擬資料缺失的情形, 使用插補法補齊 資料后予以分析研究, 比較其與理論結果之差異。 本文共分五部分, 其架構如下: 第一章 緒論, 說明研究動機與目的, 并回顧以往文獻在插補法之探討。 第二章 各種插補法及相關符號之簡介與定義。 第三章 各種插補方法之綜合比較。 第四章 實證分析。 第五章 緒論。
4

以Hot deck插補法推估成就測驗之不完整作答反應 / Inferring feasibility in non response of achievement test by using hot deck imputation method

林曉芳 Unknown Date (has links)
本研究之目的旨在探討成就測驗中,學生的不完整作答反應是否能利用插補法,對不完整作答反應資料進行彌補。研究者藉由試題參數與受試者能力參數的分析討論,期望能獲得支持插補技術應用於成就測驗的結論。研究欲探討的問題有三:(一)利用統計插補法所估算之替代值與實際作答反應之間是否有差異存在;(二)受試者之部分答題反應組型在經過插補後,與完全作答反應組型之分析結果是否有差異存在;(三)能否將統計插補技術應用於成就測驗模式中。 本研究程序包含兩部分,一為模擬資料(N=1000,3000,5000,l0000;缺失比例為5%,10%,15%,30%,50%)的分析,模擬研究主要作為實證研究結果的驗證與推論;另一個則為實證資料的分析與討論。針對不完整作答反應,基於IRT的強假設前提,以及成就測驗作答反應的資料型態,研究者選擇熱卡插補法(HOt Deck imputation method)的統計插補技術,分別對於實證資料與模擬資料中之各類樣本數,與不同缺失比率下的作答反應作插補。另又以EM插補法作對照分析。 根據研究結果與討論,提出以下幾點歸納結論:(一)當缺失比例不大時,能符合原本的資料分佈假設,但隨著缺失比例愈高,高至30%以上時,已漸不符合原本假設;(二)當缺失比例愈高時,各項參數之估計標準差值幾乎是最大的;若忽略未作答反應之受試者的表現時,其分析所得的參數估計值亦並未是最佳的,反而是將所有受試者的作答反應進行插補估計後,所得的參數估計標準差值才是最小、最佳的;(三)本研究中,主要以熱卡法為插補方法,而EM插補法並不符合本研究資料之性質,故若採用此法進行插補,則所得的估計標準差會是最大的;(四)經過模擬研究與實證資料的分析後,證明熱卡法所推估的未作答反應,與直接刪除未作答反應或不處理未作答反應的確有差異存在,且經過插補所產生的替代值,對於受試者的能力表現能提供更穩定有效的解釋力。 關鍵詞:熱卡插補法、不完整作答反應、成就測驗 / This purpose of this study is to infer the feasibility if examinees' non response could be made up, by using imputation method in non response or missing value of achievement test. The research design contains two procedures: one is simulation research (setting sample sizes are 1000, 3000, 5000, and 10000; percents of non response are 5%, 10%, 15%, 30%, and 50%), and the other is pragmatic research. Hot deck imputation method is the main concern method in this research. To test if this method fits to achievement test, EM method is used for comparison with the Hot deck imputation method. The results are as follows: 1. The distribution of below 30% percent non response data after imputated is the same as the original data, but following the higher percents of non response, the distribution is not match what we expected. 2. Applying Hot Deck imputation method to the achievement test with different sample size and different percents of non response, the researcher found that following the higher percents of non response in any sample size, the higher standard deviation happened. Besides, ignoring or deleting these non responses is not a good way to deal with this test response pattern. Imputating an appropriate answer for the non response by Hot Deck imputation method, we could get the least standard deviation of the test and ability parameters estimation, and get largest test information for examinees. 3. We found the Hot Deck imputation method is suitable for the data pattern of achievement test than EM method. There are different outcomes between Hot deck imputation method and EM method. Hot Deck imputation method also has accuracy parameter estimation. 4. Based on above discussions, this study suggested that Hot deck imputation method could cope with non response in achievement test pretty well. Key Words: Hot Deck imputation method, Non response, Achievement test

Page generated in 0.0139 seconds