• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

波動聚集考慮與否下之風險值衡量

丘至平 Unknown Date (has links)
論文名稱:波動聚集考慮與否下之風險值衡量 校所別:國立政治大學國際貿易研究所 指導教授:饒秀華博士、翁久幸博士 研究生:丘至平 關鍵字:風險值、波動聚集、厚尾、混合常態分配、Laplace分配 論文提要內容: 眾多文獻指出金融資產報酬具有厚尾(Fat-Tail)及波動聚集(Volatility Clustering)的現象。而在尾端風險的衡量方面,究竟此一非齊質變異數應否考慮亦為各方所爭論。本文之研究擬以非條件分配(即Mixture Normal、Laplace及Normal三種分配)和條件分配(即一般常用之Garch(1,1)模式加上Mixture Normal及Laplace分配)等五種方式對台灣加權股價指數及開放式一般股票型基金日報酬率資料估計風險值,輔以回溯測試決定適用之分配。 在實證結果方面,Laplace分配優於混合常態分配之風險值估計,其原因是不論台灣加權股價指數報酬率或基金報酬率的資料並未分成"左右"兩群,而是類似單一分配,因此在用實際資料配適此分配時,混合常態分配僅能區別出平均數近似,而數異數不同的兩個常態分配。而Laplace分配較混合常態分配為厚尾,故混合常態分配表現劣於Laplace分配。 就台灣加權股價指數報酬率而言,除了在1%的顯著水準及250天的估計期間,Garch(1,1)-Laplace所得之漏損率為最接近者外,其餘均是以Laplace分配所求得之漏損率最佳。 就開放式一般股票型基金報酬率而言,不論估計期間為何(250或500天),在1%的顯著水準下,Laplace分配對風險值估計較佳;在5%的顯著水準下,以Garch(1,1)-Laplace得到良好的風險值估計。或許如Danielsson and de Vries(2000)所說,縱使就一般資產報酬有波動聚集的情況,然就極端事件(α=l%)而言並不具有此一現象,故以非條件之Laplace分配求算尾端風險即可。
2

跳躍相關風險下狀態轉換模型之股價指數 / Empirical analysis of stock indices under regime switching model with dependent jump sizes risk

黃慈慧 Unknown Date (has links)
Hamilton (1989)發展出馬可夫轉換模型,假設模型母體參數會隨某一無法觀察得到的狀態變數變動而改變,並用馬可夫鏈的機制來掌控狀態間切換,可適當掌握金融與經濟變數所面臨的結構改變,因此是一個十分重要的財務模型。Schwert (1989)觀察股價波動狀況,發現經濟衰退期的股價波動比經濟擴張期大,因此認為Hamilton (1989)所提出的馬可夫轉換模型亦可應用於股票市場。然而,發現當市場上有重大訊息來臨時,大部分標的資產報酬率會產生跳躍現象,因此汪昱頡 (2008)提出跳躍風險下馬可夫轉換模型,以改善馬可夫模型所無法反映之股價不正常跳躍現象。在探討股價指數報酬率之敘述統計量與動態圖後,本文認為跳躍幅度也會受狀態影響,因此進一步拓展周家伃 (2010)跳躍獨立風險下狀態轉換模型,期望對股市報酬率動態過程提供更佳的分析。實證部分使用1999到2010年的國際股價指數之S&P500、道瓊工業指數與日經225三檔作為研究資料,來說明股價指數具有狀態轉換及跳躍的現象,並利用EM(Expectation Maximization)演算法來估計模型的參數,以SEM(Supplemented Expectation Maximization )演算法估計參數的標準差,且使用概似比(Likelihood ratio)檢定結果顯示跳躍相關風險下狀態轉換模型比跳躍獨立風險下狀態轉換模型更適合描述股價指數報酬率。最後,驗證跳躍相關風險下狀態轉換模型能捕捉其報酬率不對稱、高狹峰與波動聚集之特性。 / Hamilton (1989) proposed Markov switching models to suppose the model parameters change with unobserved state variables which control the switch between states by Markov chain. It can be appropriate to grasp the financial and economic variables which facing structural changes, so it’s a very important financial model. Schwert (1989) observed stock prices, and discovered that the volatilities of recession are higher than the volatilities of expansion. Hence, Schwert (1989) suggested to apply the Markov switching models to stock market. However, most of underlying asset return have jump phenomenon when abnormal events occur to financial market. Wong (2008) proposed Markov switching models with jump risks to improve Markov switching models which can not capture the jump risk of asset price. According to stock index return’s descriptive statistics and dynamic graph, we argue that states will impact jump sizes. In this paper, we extend the regime-switching model with independent jump risks (Chou, 2010) to provide better analysis for the dynamic of return. This paper use stock indices of the study period from 1999 to 2010 to estimate the parameters of the model and variance of parameter estimators by Expectation-Maximization (EM) algorithm and SEM(Supplemented Expectation Maximization ) , respectively. And use the likelihood ratio statistics to test which model is appropriate.Finally, the empirical results show that regime-switching model with jump sizes dependency risk can capture leptokurtic feature of the asset return distribution and volatility clustering phenomenon.
3

GARCH-Lévy匯率選擇權評價模型 與實證分析 / Pricing Model and Empirical Analysis of Currency Option under GARCH-Lévy processes

朱苡榕, Zhu, Yi Rong Unknown Date (has links)
本研究利用GARCH動態過程的優點捕捉匯率報酬率之異質變異與波動度叢聚性質,並以GARCH動態過程為基礎,考慮跳躍風險服從Lévy過程,再利用特徵函數與快速傅立葉轉換方法推導出GARCH-Lévy動態過程下的歐式匯率選擇權解析解。以日圓兌換美元(JPY/USD)之歐式匯率選擇權為實證資料,比較基準GARCH選擇權評價模型與GARCH-Lévy選擇權評價模型對市場真實價格的配適效果與預測能力。實證結果顯示,考慮跳躍風險為無限活躍之Lévy過程,即GARCH-VG與GARCH-NIG匯率選擇權評價模型,不論是樣本內的評價誤差或是在樣本外的避險誤差皆勝於考慮跳躍風險為有限活躍Lévy過程的GARCH-MJ匯率選擇權評價模型。整體而言,本研究發現進行匯率選擇權之評價時,GARCH-NIG匯率選擇權評價模型有較小的樣本內及樣本外評價誤差。 / In this thesis, we make use of GARCH dynamic to capture volatility clustering and heteroskedasticity in exchange rate. We consider a jump risk which follows Lévy process based on GARCH model. Furthermore, we use characteristic function and fast fourier transform to derive the currency option pricing formula under GARCH-Lévy process. We collect the JPY/USD exchange rate data for our empirical analysis and then compare the goodness of fit and prediction performance between GARCH benchmark and GARCH-Lévy currency option pricing model. The empirical results show that either in-sample pricing error or out-of-sample hedging performance, the infinite-activity Lévy process, GARCH-VG and GARCH-NIG option pricing model is better than finite-activity Lévy process, GARCH-MJ option pricing model. Overall, we find using GARCH-NIG currency option pricing model can achieve the lower in-sample and out-of sample pricing error.
4

狀態轉換跳躍相關模型下選擇權定價:股價指數選擇權之實證 / Option pricing under regime-switching jump model with dependent jump sizes: evidence from stock index option

李家慶, Lee, Jia-Ching Unknown Date (has links)
Black and Scholes (1973)對於報酬率提出以B-S模型配適,但B-S模型無法有效解釋報酬率不對稱高狹峰、波動度微笑、波動度叢聚、長記憶性的性質。Merton (1976)認為不尋常的訊息來臨會影響股價不連續跳躍,因此發展B-S模型加入不連續跳躍風險項的跳躍擴散模型,該模型可同時描述報酬率不對稱高狹峰和波動度微笑兩性質。Charles, Fuh and Lin (2011)加以考慮市場狀態提出狀態轉換跳躍模型,除了保留跳躍擴散模型可描述報酬率不對稱高狹峰和波動度微笑,更可以敘述報酬率的波動度叢聚和長記憶性。本文進一步拓展狀態轉換跳躍模型,考慮不連續跳躍風險項的帄均數與市場狀態相關,提出狀態轉換跳躍相關模型。並以道瓊工業指數與S&P 500指數1999年至2010年股價指數資料,採用EM和SEM分別估計參數與估計參數共變異數矩陣。使用概似比檢定結果顯示狀態轉換跳躍相關模型比狀態轉換跳躍獨立模型更適合描述股價指數報酬率。並驗證狀態轉換跳躍相關模型也可同時描述報酬率不對稱高狹峰、波動度微笑、波動度叢聚、長記憶性。最後利用Esscher轉換法計算股價指數選擇權定價公式,以敏感度分析模型參數對於定價結果的影響,並且市場驗證顯示狀態轉換跳躍相關模型會有最小的定價誤差。 / Black and Scholes (1973) proposed B-S model to fit asset return, but B-S model can’t effectively explain some asset return properties, such as leptokurtic, volatility smile, volatility clustering and long memory. Merton (1976) develop jump diffusion model (JDM) that consider abnormal information of market will affect the stock price, and this model can explain leptokurtic and volatility smile of asset return at the same time. Charles, Fuh and Lin (2011) extended the JDM and proposed regime-switching jump independent model (RSJIM) that consider jump rate is related to market states. RSJIM not only retains JDM properties but describes volatility clustering and long memory. In this paper, we extend RSJIM to regime-switching jump dependent model (RSJDM) which consider jump size and jump rate are both related to market states. We use EM and SEM algorithm to estimate parameters and covariance matrix, and use LR test to compare RSJIM and RSJDM. By using 1999 to 2010 Dow-Jones industrial average index and S&P 500 index as empirical evidence, RSJDM can explain index return properties said before. Finally, we calculate index option price formulation by Esscher transformation and do sensitivity analysis and market validation which give the smallest error of option prices by RSJDM.
5

Empirical Performance and Asset Pricing in Markov Jump Diffusion Models / 馬可夫跳躍擴散模型的實證與資產定價

林士貴, Lin, Shih-Kuei Unknown Date (has links)
為了改進Black-Scholes模式的實證現象,許多其他的模型被建議有leptokurtic特性以及波動度聚集的現象。然而對於其他的模型分析的處理依然是一個問題。在本論文中,我們建議使用馬可夫跳躍擴散過程,不僅能整合leptokurtic與波動度微笑特性,而且能產生波動度聚集的與長記憶的現象。然後,我們應用Lucas的一般均衡架構計算選擇權價格,提供均衡下當跳躍的大小服從一些特別的分配時則選擇權價格的解析解。特別地,考慮當跳躍的大小服從兩個情況,破產與lognormal分配。當馬可夫跳躍擴散模型的馬可夫鏈有兩個狀態時,稱為轉換跳躍擴散模型,當跳躍的大小服從lognormal分配我們得到選擇權公式。使用轉換跳躍擴散模型選擇權公式,我們給定一些參數下研究公式的數值極限分析以及敏感度分析。 / To improve the empirical performance of the Black-Scholes model, many alternative models have been proposed to address the leptokurtic feature of the asset return distribution, and the effects of volatility clustering phenomenon. However, analytical tractability remains a problem for most of the alternative models. In this dissertation, we propose a Markov jump diffusion model, that can not only incorporate both the leptokurtic feature and volatility smile, but also present the economic features of volatility clustering and long memory. Next, we apply Lucas's general equilibrium framework to evaluate option price, and to provide analytical solutions of the equilibrium price for European call options when the jump size follows some specific distributions. In particular, two cases are considered, the defaultable one and the lognormal distribution. When the underlying Markov chain of the Markov jump diffusion model has two states, the so-called switch jump diffusion model, we write an explicit analytic formula under the jump size has a lognormal distribution. Numerical approximations of the option prices as well as sensitivity analysis are also given.

Page generated in 0.0131 seconds