1 |
生技醫藥產業人力資源招募甄選之研究 / A Study on Human Resource Recruitment and Selection - The case of Biopharmaceuticals Industry彭文杰, Peng, Wen Jie Unknown Date (has links)
我國在政府長期健全我國產業營運環境下做出許多改變,至1980年代便將生物技術列為重點科技;1982年中央研究院成立兩個生物技術上游單位,分別為「生物醫學科學研究所」和「分子生物綜合研究籌備處」。而至1995年頒布「加強生物技術產業推動方案」來強化產業基礎設施,建構完整產業發展環境;1996年成立「經濟部生物技術與製藥工業發展推動小組」;2007年通過「生技新藥產業發展條例」,並於2008年公佈施行細則「營利事業適用生技新藥公司股東投資抵減辦法」、「生技新藥公司研究與發展及人才培訓支出適用投資抵減辦法」。特別是2013年1月1日起成為PIC/S正式會員,將我國藥品檢驗標準拉至歐盟標準,使得所發行之藥證能為成員國所接受,實屬一大進展。
生技醫藥產業之產業特性以高投入、高風險、高知識密集為主,一間研發藥廠需要花費數年的時間研發新藥,並且不保證成功,在此情況下執行研發之人員則扮演非常重要的腳色。企業在尋找人力的來源上,比較過去及現在相關科系之人員上可以發現人力的來源是增加的,但新藥的開發屬於整合性科學,僅具備單一專業無法獨力完成,略有學用落差的情況。
本研究透過深入訪談法並將我國從事醫藥產業分為國內及國外,則可發現國內廠商大多仍處於新藥開發的階段,且研發能量不足。在研發人員的尋找上通常沒有可立即利用之人力來源,而通過挖角有經驗者來取得關鍵人力。也就是這個原因國外大藥廠並未將研發單位設於我國,僅將我國視為銷售藥品的市場,在招募上以醫藥業務代表為主。招募上普遍使用網路人力銀行及員工推薦主要原因在於具有足夠的量能夠挑選。甄選上以面試作為主要工具,另外有其他輔助參考之測驗,當面試之標準具有統一指標時則有較佳甄選品質,與過去研究顯示越客觀的甄選工具效果越好之結果相同。
我國在生技醫藥產業所面臨最大問題仍然是沒有足夠專業之人力能夠支持其發展,通常無法獨力完成而需要與其他廠商合作,一方面顯現此產業之高風險難以獨力承擔,相反的,也說明我國在學用落差下,此產業急遽欠缺具備整合性專業人才。
|
2 |
生技醫藥產業研究工具專利之實驗免責的探討陳淑君, Chen, Shu-chun Unknown Date (has links)
制定專利法的本意,不僅是給予發明人在一定期限內擁有一定限度的獨占權,以鼓勵發明人揭露新穎發明,亦在於提升科技發展、提高經濟成長,使社會大眾可從既有發明中再進行卓越科技研發,以節省社會研發成本。專利法賦予專利權人禁止任何未經授權之他人製造、使用、販賣、為販賣之要約,以及為上述目的進口該專利權技術之排他權利。但為達促進產業進步的目的,各國專利法並增列研究、實驗的免責條款(experimental use exception)來平衡專利權人及社會大眾的利益。研究實驗免責的前提必須對專利權人權益造成微量或是最低限度的干擾(de minimums),即是希望對專利權人的權益造成最小傷害,同時又可以達到促進產業發展及鼓勵更多研發工作進行的目的。
我們將實驗免責條款分為二類,一種是純為好奇心,僅針對專利技術內容作實驗,研究如何改善該發明,此為狹義的實驗免責;第二種則是應用於醫藥產業,此類實驗並非改善發明內容,而是重覆實施其發明,再進行其他研究及實驗,可視為廣義的實驗免責,此即美國在1984年修正Hatch-Waxman法案之醫藥產業的實驗免責條款,只要是為提交FDA之相關實驗資料時,則可主張實驗免責,目的為使已享受二十年專利期之發明儘快成為公共財,以供大眾利用。
研究工具專利的實施方法即作為研究及實驗目的,醫藥產業上可以是生物材料,亦可以是篩選新藥方法。由於具有研究及實驗的特性,若在研究實驗免責條款下,非專利權人企圖以研究實驗免責方式來規避其侵權行為時,專利權人行使權利時,則可能遭遇不少困難。若研究工具專利又被主張為提交FDA相關資料之實驗免責時,此行為對於專利權人權益並非造成微量或是最低限度的損失,發明人未因該專利而獲益,又無法實施專利權,則會降低申請專利的意願。
專利權的效力,應給予專利權人較大權利使發明人願意揭露技術、促進社會科技進步,抑或是應給予較大實驗免責範圍,使研發機構不會受到專利權限制而阻礙社會科技發展的動力,此二種考量方向,如同位於天平的兩端,呈現兩難局面。目前法院實務案例則以執行研究工具專利會落入藥物開發之實驗免責規範為主要認定,但筆者認為應就實施研究工具專利的行為、內容、目的作一探討及了解,並顧及公平性,才是評估研究工具專利是否適用實驗免責條款之依據。
因此,專利權人應如何管理或應用其研究工具專利,並可真正執行專利權而不至落入實驗免責條款? 可由數個方向進行:一、產品形式保護研究工具專利:將研究工具的執行方式以產品形式包覆,以銷售產品的方式跳脫實驗免責之框架,未必需要經由專利授權的方式來取得利益;二、進行全球化佈局:於申請研究工具專利之前,分析其發明深度及可能競爭對手,並在可能進行製造、使用、行銷、及進口相關於此發明技術之國家申請專利,以未來如何執行及如何獲利作為考量全球佈局之策略;三、成立契約研發中心(contrast research organization,CRO):當研究工具專利在執行專利權有困難,不易跳脫實驗免責範圍,則可使用營業秘密 (Trade Secret) 方式保護其發明,不以公開技術方式,而是應用研究工具成為新藥篩選中心,提供研發服務;四、授權國家單位:即是採用類似NIH之OTT模式,將研究工具專利權直接授權給政府,由政府支出其授權金並可擴展至更多研發機構。
至於非專利權人,如一般之研發機構,應如何利用研究工具專利,且不落入專利侵權的疑慮? 除了取得專利授權外,亦可採用:一、從已授權國家單位取得技術:即如同NIH之OTT模式,由已取得研究工具專利授權之政府單位進行非專屬授權,該發明具較合理之授權金,並可被更多研發機構善加利用;二、落入實驗免責範疇:針對研究工具專利之實質發明內容進行改良及應用,再利用其方式以進行其新藥研發實驗,則可適用於實驗免責的規定;三、交互授權(Cross-license):使用研究工具專利之研發機構與原本專利權人合作,經由交互授權方式成為合作伙伴,則可達到雙贏;四、成立開放社群,共同分享技術:如多數國家成立之GenBank,或BIOS (Biological Innovation for Open Society)社群之概念,收集對人類具有重大意義之研究工具,如基因序列等,以開放原始碼(Open source)之社群相互分享,使後續研發工作更加快速及順暢。
除了上述方法外,專利法可仿照著作權法,增定合理使用(fair use)之相關規定,亦即除了試驗例外、第三人繼續使用權、私人領域內之非營利性使用外,賦予第三人一般而全面性的專利權合理使用範圍,或以自願性參與集體授權機制(voluntary collective rights licensing)以支付合理權利金,促進社會公益。實驗免責條款可使得發明人願意持續公開其發明,同時使新穎發明公諸於世,兼顧社會公益,促使社會經濟及產業的進步,使國家社會整體因研發創新而真正獲益。 / The original purpose of the patent law not only offers the exclusivity to the inventors in a limited periods and in a limited rights in order to inspire the inventors to disclose more novel inventions, but also encourages the development of the technology and increases the growth rate of economics to the publics. The more new inventions the inventors provide, the more cost of R&D will be saved in whole society. The right of the exclusivity for the patentee is when someone without authority from the patentee, he can’t makes, uses, offers to sell, or sells any patented inventions, within the countries, or imports into the countries. But in order to enliven the industrial growth, the experimental use is added as a legal exception in many countries to balance the benefits of the patentee and the public interests. We should minimize interference to the patentee’ rights when the experimental use exception of the patents is claimed.
We can divide the experimental use exception into two classes. One is the narrowly-defined experimental use exception only for the curiosity, for testing the content of the patents. The use aims to find out how to improve the inventions. The broadly-defined experimental use exception that is applied in the medical industry. This kind of use does not improve the technology of the invention, but repeat the invention again without changing any content. Such kind of broadly-defined experimental use exception is created after Hatch and Waxman Act in 1984. The experimental use exception in the medical industry is described that if the result of the experience is for submitting the drug information for the FDA examination, it is claimed non-infringement of the patent and protected by “safe harbor” of 35 USC 271 (e)(1). The purpose is to practice the inventions of the patents earlier and save the cost of R&D through public use.
Research tool patent are used for the purpose of research and experiment and improves the speed of the experiment. In the medical industry, the research tool patent may be the biological material or the method of screening the new drug. Because of the experimental characteristics, the non-patentee may claim the experimental use exception and cause persecutions to the patentee. This kind of experimental use exception is not fair to the patentee and damage patentee’s benefit, especially in the research tool patentee. The patentee will not be able to receive the royalty from the non-patentee who claims the experimental use exception. As a result, it would reduce the will of filing such kind of patents.
Should the effect of the patent right grant the patentee a broader right to patentees to encourage the inventors to release new technology which benefits the social and scientific progress? Or it should offer a large range of the experimental use exempt for the research institutes to encourage the using in the experimental use exception? It is difficult to judge which direction is better than the other one. The court are taking the side of the range of experimental use exception, allowing the research tool patents in the pre-clinical tests or experiment for submitting to FDA. This thesis proposes that there should be more criteria other than FDA, such as the purpose and the practical condition of use. Only when the whole situation and justice are taken into consideration will there be a suitable explanation of the experimental use exception.
This thesis offers some suggestions concerning the management and application of research patent tools for the patentee and the non-patentee. It also assert that regulations about the fair use, such as experimental use exception, non-profit private use, voluntary collective rights licensing with rational royalty, can be added to the patent law to urge the patents to be put into practice. The reasonable experimental use exception can encourage the inventors to release his invention and the R&D departments to improve the technology more aggressively, realizing social and industrial advancement through the patent applications.
|
3 |
亞洲生技醫藥產業之生產力與效率分析 / The Productivity and Efficiency Analysis of Biotech Pharmaceutical Industry in Asia蕭雅茹 Unknown Date (has links)
各國視生技產業為未來發展的關鍵產業,並積極推動各項政策,使生技產業能快速成長,而生技醫藥市場是促成全球生技產業成長的主要動力,為了增加我國的競爭力,希望藉由與鄰近國家醫藥產業的比較,能更了解台灣生技醫藥產業經營績效。
本研究採用Battese and Coelli (1995)隨機成本邊界法,針對2002-2007年間,日本、南韓、中國、印度與台灣等五個國家,共61家生技醫藥廠商進行實證分析,研究結果如下:(1)研發密集度增加使成本效率降低,五個國家裡,日本最具成本效率。(2)產業平均成本效率值為0.855,且有逐年惡化的趨勢。(3)整體產業平均處於遞增規模報酬階段。(4)整體而言,總要素生產力(TFP)的提升主要是因為規模成分的貢獻,其次為技術的進步,而技術效率變動率對TFP成長率為負影響。(5)各國間雖然TFP變動率不存在顯著性差異,但在規模成分、技術變動率與技術效率變動率等方面存在著顯著的差異。 / Many countries regard biotechnology as a key industry for the future development. Governments often implement a variety of policies to help it grow rapidly. The biotech pharmaceutical industry is the main momentum for the growth of the global biotech industry. The objective of this paper is to measure the productivity and efficiency of the industry among Asian countries, and investigates the sources of the performance changes, and then hope to give some insight into the enhancement of the industry’s productivity.
To pursue our goal, we adopt Battese and Coelli’s (1995) stochastic frontier approach to assess 61 biotech pharmaceutical firms during 2002-2007. The main empirical results can be summarized as follows: (1) The R&D intensity is negatively related to cost efficiency; in five countries, Japan has the highest cost efficiency. (2) On average, the cost efficiency is about 0.86, and has become worsen year after year. (3)Most of time, the industry is characterized with the increasing returns to scale. (4) The growth of total factor productivity (TFP) is mainly attributed to the scale efficiency change, and technical progress accounts for a minor source. However, technical efficiency deteriorates over time. (5) Among countries, the TFP growth rates have no significant differences, but the components show apparent differences.
|
Page generated in 0.0159 seconds