1 |
移動污染源空氣污染減量之政策工具有效性分析 ── 台灣地區實證研究梁瀞云 Unknown Date (has links)
機動車輛已成為空氣污染的首要污染來源之一,其所排放大量的一氧化碳、二氧化碳對地方乃至於全球環境皆造成不利的影響。為了因應環境污染與溫室效應,各國除了採取行政管制措施外,亦引進經濟誘因工具來落實污染者付費的原則。本研究的目的即是探討,台灣地區目前所實施的政策工具對於減少來自移動污染源的污染排放量的有效性。
本文利用台灣地區二十三個縣市 1998 年至 2006 年共九年的追蹤資料,以兩種模型進行實證:第一個模型採用的是一階差分後的普通最小平方法迴歸模型,可避免假性迴歸的問題發生;第二個模型為似不相關迴歸模型,藉由誤差項間的關聯性來結合北部、中部、東部、南部四個地區的迴歸式,觀察政策工具在不同區域間對污染減量的效果。
實證結果顯示,管制與稅費這兩種政策工具確實會對移動污染源產生的空氣污染有相當的抑制效果;但是相較之下,管制措施的影響力相對於稅費的徵收來得明顯。因此,已知管制工具具有環境保護的政策有效性外,若欲使得稅費政策對空氣污染減量也有更明顯的成效,便應實施綠色租稅改革,以期能夠對生活環境產生良好的改善。 / Due to its high share in total air pollutant emissions, mobile pollution source is an issue of particular consideration. Vehicles produce large volumes of emissions such as CO, CO2, and so on. These gases can be detrimental to local, regional and global environment. With the increasing concern over rising pollution levels and greenhouse effect, the purpose of this study is to evaluate the effectiveness of different environmental policy instruments which are used to reduce mobile source air pollution.
For this paper, a case study of Taiwan is demonstrated for the estimation. Using the first-differenced panel data collected from 1998 to 2006, we use two models, namely “Ordinary least square model” and “Seemingly unrelated regression model” to investigate whether the command and control policy or the economic-incentive tax strategy is better for emission abatement. The first-differenced ordinary least square model can be used to avoid spurious regression, and the seemingly unrelated regression system integrates four sub-equations by assuming their disturbances are correlated, explaining some phenomenon in different areas.
The result shows that both control and tax strategies are worthwhile to be adopted. However, regulation policy results in cutting down much more CO and CO2 than using the excise taxes and fuel fees as an environmental instrument. Therefore, we conclude that it is required to implement the green tax system reform in order to create beneficial changes in our life.
|
Page generated in 0.0154 seconds