• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

OLED產業的式微與再起歷程之研究-複雜理論的觀點

張惟淳 Unknown Date (has links)
CRT從1940年代開始就主宰著整個電視機的市場,開啟顯示技術的發展,到了二十一世紀,人類為追求高品質、更貼近人性化的生活,顯示器已從傳統的陰極射線管(CRT)進入平面顯示器(FPD)時代。在最新的平面顯示技術OLED (Organic Light Emitting Diode有機發光二極體)問世後,此平面顯示新技術更是吸引了產業及學術界的關注,進而從事開發與研究。 但是OLED歷年的產值與年成長率不如市調機構所預期,甚至在2006年發生了產業崩跌的情形,年營收成長率首度出現負成長,許多國際大廠在這段期間結束了OLED事業部門。不過這個下滑趨勢在2007年止住,且就此之後產值又開始向上攀升。OLED面板在2008年的產值年成長率甚至高過整體平面顯示器,使得整個產業似乎有逐漸抬頭的跡象。同時,知名的市調機構DisplaySearch也指出,儘管2008年全球OLED顯示器產值佔全球整體平面顯示器產值比重不到1%;但預估到了2015年時,OLED產品產值佔整體平面顯示器產值比重將提高到5%,各界對於這項新世代的顯示技術又再度抱持樂觀的看法。 有鑑於上述的產業發展現象,本研究回顧以往對於OLED的研究,研究重點往往放在OLED產業的發展策略、關鍵成功因素的分析,對於探討產業發展歷程的研究少有著墨。故本篇論文針對OLED產業發展的興衰進行研究,透過個案研究的方式,針對國內外OLED產業的發展進行深入探討,希望能夠找出產業衰弱與重新站起的原因,並供實務界參考。 本研究首先透過文獻的探討,瞭解用以分析產業發展的相關理論,其中包括「產業分析理論」、「擴散理論」、「複雜理論」等相關理論,並最後以「複雜理論下的動態創新過程」,結合部分產業分析理論與時間因素,發展出一套用以描述產業發展歷程的研究架構。本研究的命題整理如下: 1.在產業發展歷程中,產業內正向與負向驅動力之間的消長,會決定產業最終的表現。 2.產業有如複雜適應系統,有著非線性的發展,各自獨立自主但受其他個體的影響,因應市場不同變化,彼此互相學習模仿,並尋找有利的方向,共同演化。 3.產業環境如同處於混沌邊緣(the edge of chaos),一種介於有序與無序、現況與創新、穩定與轉型之間的狀態;而OLED產業就在這混沌邊緣不斷演化成長。 4.產業的擴散過程中,因為新的技術、新的應用領域等,都使產業內產生突現的現象,而突現現象的產生,有的會引發正回饋效果,有的引發負回饋效果,都對產業的擴散產生影響。 5.在產業的擴散過程中,具有較明顯自我組織現象的發展階段,比起自我組織現象較不明顯的階段,具有比較理想的擴散效果。 6.產業初始狀態的差異影響日後產業擴散的結果,同時產業內的創新領導者或意見領袖也會引領產業的發展。 7.產業發展初期,體制開放程度越高,可吸引越多的新進者,愈有利產業發展;相反的,體制開放程度低,則不利於產業發展;但若要產業蓬勃發展,產業內需要有規格化的標準。 8.技術突破的難易程度影響產業的擴散。 9.具成本與技術成熟度優勢的競爭性技術,會影響到新興技術的擴散。 10.當新技術進入產業化階段時,對於新技術的需求端,其採用與否會影響到產業的擴散。 11.政府的角色對於一個新興產業的發展,具有降低進入障礙,提高產業體制內自由度的助益。 / From the beginning of the 1940s, CRT was the key to the entire TV market. When the 21th era began, mankind were in pursuit of high-quality, closer to human life, so it changed from traditional display of the cathode ray tube (CRT) to the flat panel display (FPD) era. As the latest flat panel display technology OLED (Organic Light Emitting Diode Organic Light Emitting Diode) was first published, this flat panel display was a new technology which has attracted the concern of industry and academia, and then engaged in the development and research. Nevertheless the production value of OLED was lower than the well-known forecast agent like DisplaySearch predicted, hence many international companies in the 2006 ended OLED business sector. However, this downward trend stopped in 2007, and it began to take-off. OLED panels in 2008,its annual growth rate of output was even higher than the overall flat-panel displays, making the whole industry seemed to be prosperous again. From the above description of industrial development, the study of the past for OLED research, the focus was often on the OLED industry development strategy or on the analysis of critical success factors for OLED. To explore the development of research rarely written. Therefore, this paper is to study the rise and fall of OLED industry, using the way of case study. This study first try to understand some relevant theories which are about industry development, including the "industry analysis", "diffusion theory", "complexity theory" and other related theories, and finally combined "the complex dynamic process of innovation " with some factors of industry analysis and the time factor, to describe the development of OLED. Finishing this study comes out some findings such as following: In the course of industrial development, the positive and negative driving forces which affect the growth of industry, will determine the ultimate performance of industry. The industry, in the process of diffusion , which showed more obvious self-organization than the others will get more satisfactory results. There are still some other findings in the thesis, I hope the study of the cause and effect about OLED industry will be useful for practical reference.
2

概念型創新的動態擴散過程--複雜理論觀點

王美雅, Wang, Mei-ya Unknown Date (has links)
許多新概念或新技術的擴散通常不僅耗時甚長、擴散範圍十分廣泛,再加上社會網路在其中扮演了重要的角色,使得創新擴散本質上就屬於一種動態、非線性的複雜現象,事實上,近來研究發現,創新擴散的諸多特徵,包括「動態、非線性的複雜行為」,「正向回饋的自我組織現象」,以及「對初始狀態一些微小因素的敏感度」等,都與複雜理論中所強調「複雜系統」中的諸多特徵不謀而合。 另一方面,近來創新擴散研究逐漸將擴散視為一個創新者與採用者雙向互動的傳播過程,在擴散過程中,創新的演化與成員間的動態互動成為主要焦點。過去的擴散研究較少討論個體與總體層次間的結構化過程,亦即成員如何互動而產生系統層次的創新秩序,而系統層次的創新結果又如何進一步影響成員的互動,而複雜理論正好可以提供跨層次架構來回應此一理論缺口。 因此,本論文的研究問題包括以下兩者:一、由複雜理論觀點來看,概念型創新擴散的動態過程為何?二、由複雜觀點來看,在概念型創新的擴散過程中,相關因素如何影響創新擴散的動態過程?這些因素間存在何種互動與回饋關係?承上所述,本研究的範圍界定為「概念型創新」,在此「概念型創新」指的是近似於典範的一種具有複雜多元內涵的創新。 在研究方法上,本論文採用序列性多元方法的研究設計。利用歷史法、實驗法與個案法三種研究方法,針對相同的兩項問題,總共進行三項實證性研究,透過「質性方法--量化方法--質性方法」三種研究方法的截長補短,提高本研究的理論效度。 研究一利用歷史研究法對蒙特梭利教學法的擴散過程進行研究,將蒙特梭利教學法的擴散分為三階段,透過三階段成功、失敗與成功三種不同結果,發現不同的初始狀態變數情況,主要是再創造可能性與體制開放與自由度,將導致創新擴散的不同結果。研究二新概念擴散實驗進行兩階段實驗設計,操弄五項自變數進行重複多因子實驗,共取得二十八個實驗數據;比較不同變數情境與採用結果,除了驗證初始狀態變數對創新擴散的影響外,也發現自變數間存在明顯的交互關係。研究三進行蝴蝶蘭產業創新擴散個案研究,比較台糖進入蝴蝶蘭產業前後的創新擴散過程,以及蝴蝶蘭、嘉德利雅蘭,以及國蘭三種蘭屬的發展過程。隨著三項實證研究的進行,變數內涵逐漸豐富化,證據力也進一步強化。在研究三結束後得到修正後的觀念性架構,成為本論文的結論。 在結論部分,本研究有三大主張。首先,系統的初始狀態,包括創新導入者的網路位置、體制自由與開放性、再創造可能性、創新內涵豐富性、擴散誘因與採用人數等六項因素,將影響創新擴散成功的可能性。其次,創新擴散過程中包含許多的演化與正向回饋機制。最後,創新擴散是一個自我組織的過程,系統秩序從低一層次成員之間的互動自然突現,而非走向無序;但在自我組織過程中,秩序的出現有賴於中央協調機制(標準版本);同時系統需要不斷輸入的能源,使其維持在自我組織行為出現的臨界點之上,這些能源通常來自於新採用者所帶來的量與質的效果。 / This dissertation applies a new perspective, complexity theory, to discuss the diffusion of “conceptual innovation”. Here conceptual innovation indicates a paradigm-like innovation with various content. By using “metaphor”, I treat diffusion as a self-organization process, and adopted important concepts from complexity theory, such as initial conditions, positive feedback, and self-organization, and then develop a dynamic process model of innovation diffusion. In this dissertation, a multi-method research design is adopted. To draw on the strength of each and offset the weakness of the others, three empirical studies were conducted. First study, the pilot study of this dissertation, is concerning the diffusion process of Montessori method, in which the different result of three diffusion stages was compared. Second, a laboratory experimental study simulating diffusion process of a new concept has been conducted. In each experiment, a new concept was announced and counted the number of adopters. Each experiment has different scenario design that is one specific combination of all variables, and then the number of adopters was compared. Third, the diffusion process of Phalaenopsis (Moth Orchid) industrial innovations was studied, in which the development process of early/late stage and three category orchids was compared. This dissertation concludes with the following findings. First, innovation diffusion is a dynamic, nonlinear complex process; factors in initial conditions will influence the result of innovation diffusion. Secondly, evolution and positive feedback effects work continuously all through the diffusion process. Finally, diffusion of conceptual innovation is a self-organization process, which depends on energy injecting into the system continuously and the existence of central coordination mechanism in the system.
3

從複雜理論觀點探討MOOCs創新擴散之動態歷程 / Exploring the Dynamic Diffusion Process of MOOCs From a Complexity Theory Perspective

許映庭 Unknown Date (has links)
MOOCs實現了高等教育的跨國性、大量性與開放性,成功將世界各地的學習者、教學者與相關機構帶進全球網絡,為全球知識與傳播提供一個全新的平台。這場由世界頂尖大學所引發的MOOCs風暴,短時間內便席捲全球,在高等教育界掀起一陣波瀾。《紐約時報》甚至將MOOCs形容成一場「校園海嘯」,以迅雷不及掩耳的速度,衝擊高等教育的百年現場。 然而,究竟這場MOOCs風暴是如何一路延燒到世界各地?不同階段的影響因素又有何不同?為了釐清這些問題,本研究利用複雜理論「系統性」與「動態性」的觀點,探討MOOCs創新擴散之動態歷程,分析相關因素如何影響各個階段的歷程演變,以及因素之間互動後所產生的回饋關係。 本研究採用歷史研究法,並參考王美雅(2005)的創新擴散之動態模型,做為研究架構之基礎,探討MOOCs各階段擴散歷程之初始狀態、演化與正向回饋效果以及自我組織的現象。 研究結果發現,MOOCs的擴散事實上是一個自我組織的過程。在MOOCs擴散過程中,以「創新者的網路位置」與「理解創新的難易程度」兩項變數的影響尤其顯著。而各項變數之間不僅擁有正向回饋效果,亦存在著負向回饋效果,進而影響MOOCs的擴散與演化。 / MOOCs successfully brought global students, educators, and related organization into a global network, forming a platform for global diffusion of knowledge. Started by top universities around the globe, MOOCs’ forces have swept around the globe in a short amount of time, creating ripples in the higher education web. The New York Times describes MOOCs as a “Campus Tsunami,” sweeping through the sectors of higher education. How did this “Campus Tsunami” sweep around the globe? What are the factors that affect its dynamic diffusion process? In order to clarify these questions, this study employs the systematic and dynamic point of view of the complex theory to analyze how the factors influence each of MOOCs diffusion stages and what effects the factors create after interaction. This study employs the historical study method and Mei Ya, Wang’s (2005) dynamic innovation diffusion model as the fundamental structure to explore the initial conditions, evolution and positive reinforcements, and self-organization of each diffusion stage. The results demonstrate that MOOCs’ diffusion is based on self-organization. Within the seven factors, innovator networks and the difficulties in understanding innovation are the foremost influential factors. During MOOCs diffusion stages, the different factors interact with each other, producing both positive reinforcements and negative reinforcements, thus influencing MOOCs continuous diffusion and development.

Page generated in 0.0237 seconds