1 |
基因晶片資料的三種正規化方法介紹與比較紀翔譯 Unknown Date (has links)
基因晶片實驗包含了複雜的實驗步驟,在每個步驟都可能因為技術不佳或是人為疏失而產生系統誤差。而「正規化」(Normalization)是一個專業術語,指的就是將系統誤差自資料處理中移除的過程。由於正規化過程在基因晶片的資料處理上佔有非常重要的地位,所以新的正規化方法也不停的被提出。Kerr, Martin, 和Churchill(2000)提出了利用變異數分析模型(ANOVA model)來估計系統誤差的方法;Yang, Dudoit, Luu, and Speed(2001)提出了利用MA圖和Loess非線性函數來消除染劑差異的方法;Kerr, Afshari, Bennett, Bushel, Martinez, Walker, Churchill(2001)提出了結合先前的變異數分析模型和MA圖的新方法;Tsai, Hsueh, Chen(2002)提出了利用Loess非線性函數來估計變異數模型中晶片和基因間的交互作用以及染劑和基因間的交互作用的方法。有鑒於正規化方法眾多,但是每種方法的操作方式和使用上的優、缺點並沒有整合性的介紹和比較,本論文將詳細介紹上述正規化方法,並實際處理TCDD研究實驗的資料。接著利用模擬的資料來計算出三種正規化方法處理前、後的錯誤發現率(False Discovery Rate;FDR)和型二錯誤率(False Negative Rate;FNR)的變化情形,藉此比較三種正規化方法在使用上的優劣。
關鍵字:正規化(Normalization),變異數分析模型(ANOVA model),MA圖,Loess非線性函數,錯誤發現率(False Discovery Rate;FDR),型二錯誤率(False Negative Rate;FNR)
|
2 |
基因晶片實驗其樣本數之研究 / Sample Size Determination in a Microarray Experiment黃東溪, Huang, Dong-Si Unknown Date (has links)
微陣列晶片是發展及應用較為成熟的生物晶片技術。由於微陣列實驗程序複雜,故資料常包含多種不同來源的實驗誤差,為了適當的區分實驗中來自處理、晶片及基因的效應,我們提出混合效應變異數分析模型來調整系統誤差。針對各基因在不同實驗環境的差異性假設檢定問題,利用最小平方法推導出點估計以及對應的檢定統計量。本研究介紹多重檢定問題中的族型一誤差,並證明在此模型下,Sidak調整法為適當的多重檢定方法。在給定族型一誤差率的顯著水準,利用檢定力的公式,運算出在預設檢定力的最低水準下所需最小樣本(晶片)數。最後我們透過電腦模擬,以蒙地卡羅法來估計檢定力與族型一誤差率,由模擬結果發現,採用此最小樣本數結果,其檢定力可達到預期的水準以上,並且其族型一誤差率皆適當地控制在顯著水準以內。
|
Page generated in 0.0142 seconds