91 |
Characterizing the Role of Regulator of G-protein Signalling 4 as a Mediator of Sinoatrial Node and Atrial Cardiomyocyte FunctionCifelli, Carlo 14 February 2011 (has links)
Heart rate is modulated by the opposing activities of sympathetic and parasympathetic inputs to pacemaker cardiomyocytes in the sinoatrial (SA) node. Parasympathetic activity on nodal myocytes is mediated by acetylcholine-dependent stimulation of M2 muscarinic receptors and activation of Gαi/o signalling. Although, regulators of G-protein signalling (RGS) proteins are potent inhibitors of Gαi/o signalling in many tissues, the RGS protein(s) that regulate parasympathetic tone in the SA node are unknown. Our results demonstrate that RGS4 mRNA levels are higher in the SA node compared to right atrium. Conscious freely moving RGS4-null mice showed a greater extent of bradycardia in response to parasympathetic agonists compared to wild-type animals. Moreover, anaesthetized rgs4-null mice had lower baseline heart rates and greater heart rate increases following atropine administration. Retrograde-perfused hearts from rgs4-null mice also showed enhanced negative chronotropic responses to carbachol, while isolated SA node myocytes showed greater sensitivity to carbachol-mediated reduction in the action potential firing rate. Finally, rgs4-null SA node cells showed decreased levels of G-protein-coupled inward rectifying potassium (GIRK) channel desensitization, and altered modulation of acetylcholine-sensitive potassium current (IKACh) kinetics following carbachol stimulation. Taken together, our studies establish that RGS4 plays an important role in regulating sinus rhythm by inhibiting parasympathetic signalling and IKACh activity. Following these results, we predicted that loss of RGS4 expression and function will result in increased levels of parasympathetic effector activity leading to increased susceptibility to atrial fibrillation.
Susceptibility to atrial fibrillation (AF) depends strongly on parasympathetic activity. Since RGS4 inhibits parasympathetic / M2-dependent Gαi/o signalling in the SA node, we explored whether changes in RGS4 levels altered the susceptibility of atrial fibrillation. We found that, RGS4 levels were decreased in atria of tachypaced dogs prior to their development of chronic AF. Moreover, in vivo ECG recordings of anaesthetized mice showed greater susceptibility to AF while optical mapping of isolated atrial preparations using a voltage-sensitive dye revealed greatly increased susceptibility to rotor formation when RGS4 was ablated. Consistent with altered parasympathetic signalling in the myocardium of rgs4-null mice, IKACh evoked by carbachol application were greater in isolated atrial myocytes from rgs4-null mice. These IKACh changes were, as expected, associated with marked action potential duration shortening in response to parasympathetic activation, but not to slower conduction velocities. Together, our findings establish that RGS4 protects atrial tissues from excess parasympathetic signalling that predispose to atrial fibrillation.
|
92 |
Behavioral and Electrographic Abnormalities due to Repeated Hypoglycemic Episodes in MiceSheppy, Evan Anthony 22 September 2009 (has links)
Severe hypoglycemia poses the greatest challenge to glycemic control in diabetic patients, especially children with type 1 diabetes mellitus. Although in vivo animal models exist for investigating the effects of hypoglycemia, few studies examine repeated hypoglycemia and none investigate within the context of a juvenile animal model. The main objective of this thesis was to examine electroencephalographic (EEG) and behavioral abnormalities manifesting as a result of repeated hypoglycemia in juvenile diabetic and non-diabetic mouse models. Using a novel implantation technique, the hippocampal and cortical EEG were recorded during repeated insulin-induced hypoglycemia. It was discovered that repeated hypoglycemia exacerbated behavioral convulsion severity and promoted epileptiform EEG activity within the hippocampus and cortex of both diabetic and non-diabetic animals. Furthermore, sustained hypoglycemia caused a significant decrease in hippocampal EEG activity in diabetic animals compared with non-diabetics. These results suggest recurrent hypoglycemia may promote and worsen seizures associated with hypoglycemia in diabetic children.
|
93 |
The Thermal Grill Illusion of Pain: Characterizing Differences in Response across Body SitesBrunello, Maria Eugenia 15 December 2010 (has links)
The simultaneous application of interlaced innocuous warm and cool stimuli (a thermal grill stimulus, TGS) can elicit sensations of burning heat (the Thermal Grill Illusion, TGI). The TGS is thought to alter the central interactions between somatosensory sub-modalities (i.e. cold-inhibition of pain). Previous psychophysical findings point to body site differences in perceptual thermal thresholds. The primary objective of this study was to evaluate whether, using the same TGS, a TGI can be elicited at body sites other than the upper extremity. The present findings indicate that the TGI can be induced at the palm, back, calf, and foot. Pain and unpleasantness in response to the TGS were more frequent and intense following stimulation of the palm and back than the calf and foot. Lower cold pain thresholds were associated with lower pain intensity ratings in response to the TGS. These two findings may reflect differences in central integrative processes.
|
94 |
Transition to Seizure in the CA3 Hippocampal Network: Predominant Preictal GABAergic Potentials, followed by Predominant Ictal Glutamatergic PotentialsZhang, Zhang Jane 30 November 2011 (has links)
The mechanisms underlying the transition to seizure are still unresolved. Proposed mechanisms include excitatory GABAergic drive, loss of interneuron-mediated inhibition, and glutamatergic input potentiation. The objective of this thesis was to investigate the relative contributions of synchronized glutamatergic and GABAergic inputs and their functional roles during ictogenesis in the epileptic neonatal (postnatal days 6-12) mouse hippocampus, induced with 0.25mM Mg2+/5mM K+ perfusion. Simultaneous field and whole-cell patch-clamp recordings were obtained from CA3 stratum-oriens interneurons and pyramidal cells.
The antagonists for GABAA and glutamate receptors abolished the preictal and ictal discharges, respectively, suggesting that the preictal state is mediated by the coherent discharges of GABAergic inhibitory interneurons, whereas the recurrent excitatory inputs are required for ictogenesis. Synaptic charge transfers underlying the synchronized discharges showed a dynamic change in the balance between the inputs: GABAergic currents markedly diminished by ictal onset whereas glutamatergic currents dominated at ictal onset and throughout the ictus.
|
95 |
The Effects of Continuous Positive Airway Pressure on the Work of Breathing at Rest and during ExerciseMachina, Matthew 19 March 2013 (has links)
Ventilation may limit exercise. Wearing a gas mask may further compromise ventilation. Continuous positive airway pressure (CPAP) improves ventilation by reducing airway resistance and thus the work of breathing. We investigated the effects of wearing a gas mask with and without CPAP on the work of breathing (WOB) during resting and exercise conditions to determine (a) whether wearing a gas mask increases the WOB and (b) whether the application of CPAP to a gas mask will mitigate (reduce) said increase to the WOB.
Ten healthy males completed two test protocols with three stages each, and in three mask conditions. Physiological and dyspnea parameters were measured.
Wearing a gas mask increased the metabolic cost and work of breathing. When the portable CPAP device was applied, there was no change in the calculated work of breathing, but metabolic cost of breathing was significantly reduced. CPAP also significantly reduced the sensation of dyspnea.
|
96 |
Hypoxia-induced Decrease in Renal Medullary Osmolality: Prevention with dDAVPVoicu, Laura 16 February 2010 (has links)
Acute kidney injury (AKI) may result from perioperative renal medullary hypoxia. Despite high oxygen delivery to the kidney, the medullary thick ascending limb (mTAL) in the outer renal medulla is susceptible to hypoxia because of its high oxygen consumption and relatively low rate of blood flow. The objective of this study was to evaluate the effect of a low pO2 (8% FiO2 for 5 h) on the major function of the mTAL and to develop a strategy to protect the mTAL in this setting. Evidence of hypoxia-induced reduction in mTAL function included low interstitial and urine osmolality but only a minimal rise in Na+ excretion; this was prevented by pre-treatment with desmopressin acetate (dDAVP), a vasopressin analogue which may increase tissue pO2. A decrease in urine osmolality may be of diagnostic value for hypoxic renal damage and dDAVP may prevent acute kidney injury in the perioperative setting.
|
97 |
Structure/Function Studies of the High Affinity Na+/Glucose Cotransporter (SGLT1)Liu, Tiemin 15 September 2011 (has links)
The high affinity sodium/glucose cotransporter (SGLT1) couples transport of Na+ and glucose. Investigation of the structure/function relationships of the sodium/glucose transporter (SGLT1) is crucial to understanding co-transporter mechanism.
In the first project, we used cysteine-scanning mutagenesis and chemical modification by methanethiosulphonate (MTS) derivatives to test whether predicted TM IV participates in sugar binding. Charged and polar residues and glucose/galactose malabsorption (GGM) missense mutations in TM IV were replaced with cysteine. Mutants exhibited sufficient expression to be studied in detail using the two-electrode voltage-clamp method in Xenopus laevis oocytes and COS-7 cells. The results from mutants T156C and K157C suggest that TM IV participates in sugar interaction with SGLT1. This work has been published in Am J Physiol Cell Physiol 295 (1), C64-72, 2008.
The crystal structure of Vibrio parahaemolyticus SGLT (vSGLT) was recently published (1) and showed discrepancy with the predicted topology of mammalian SGLT1 in the region surrounding transmembrane segments IV-V. Therefore, in the second project, we investigated the topology in this region, thirty-eight residues from I143 to A180 in the N-terminal half of rabbit SGLT1 were individually replaced with cysteine and then expressed in COS-7 cells or Xenopus laevis oocytes. Based on the results from biotinylation of mutants in intact COS-7 cells, MTSES accessibility of cysteine mutants expressed in COS-7 cells, effect of substrate on the accessibility of mutant T156C in TM IV expressed in COS-7 cells, and characterization of cysteine mutants in TM V expressed in Xenopus laevis oocytes, we suggest that the region including residues 143-180 forms part of the Na+- and sugar substrate-binding cavity. Our results also suggest that TM IV of mammalian SGLT1 extends from residue 143-171 and support the crystal structure of vSGLT. This work has been published in Biochem Biophys Res Commun 378 (1), 133-138, 2009
Previous studies established that mutant Q457C human SGLT1 retains full activity, and sugar translocation is abolished in mutant Q457R or in mutant Q457C following reaction with methanethiosulfonate derivatives, but Na+ and sugar binding remain intact. Therefore, in the third project, we explored the mechanism by which modulation of Q457 abolishes transport, Q457C and Q457R of rabbit SGLT1 expressed in Xenopus laevis oocytes were studied using chemical modification, the two-electrode voltage-clamp technique and computer model simulations. Our results suggest that glutamine 457, in addition to being involved in sugar binding, is a residue that is sensitive to conformational changes of the carrier. This work has been published in Biophysical Journal 96 (2), 748-760, 2009.
Taken together our study along with previous biochemical characterization of SGLT1 and crystal structure of vSGLT, we propose a limited structural model that attempts to bring together the functions of substrate binding (Na+ and sugar), coupling, and translocation. We propose that both Na+ and sugar enter a hydrophilic cavity formed by multiple transmembrane helices from both N-terminal half of SGLT1 and C-terminal half of SGLT1, analogous to all of the known crystal structures of ion-coupled transporters (the Na+/leucine transporter, Na+/aspartate transporter and lactose permease). The functionally important residues in SGLT1 (T156 and K157 in TM 4, D454 and Q457 in TM 11) are close to sugar binding sites.
|
98 |
Hypoxia-induced Decrease in Renal Medullary Osmolality: Prevention with dDAVPVoicu, Laura 16 February 2010 (has links)
Acute kidney injury (AKI) may result from perioperative renal medullary hypoxia. Despite high oxygen delivery to the kidney, the medullary thick ascending limb (mTAL) in the outer renal medulla is susceptible to hypoxia because of its high oxygen consumption and relatively low rate of blood flow. The objective of this study was to evaluate the effect of a low pO2 (8% FiO2 for 5 h) on the major function of the mTAL and to develop a strategy to protect the mTAL in this setting. Evidence of hypoxia-induced reduction in mTAL function included low interstitial and urine osmolality but only a minimal rise in Na+ excretion; this was prevented by pre-treatment with desmopressin acetate (dDAVP), a vasopressin analogue which may increase tissue pO2. A decrease in urine osmolality may be of diagnostic value for hypoxic renal damage and dDAVP may prevent acute kidney injury in the perioperative setting.
|
99 |
The Functional Characterization of Two Regulators of G-protein Signaling Proteins Abundantly Expressed in Vascular Smooth Muscle CellsGu, Steven 03 March 2010 (has links)
Precise regulation of heterotrimeric G-protein signaling is important for maintaining proper cardiovascular system function. Indeed, G-protein signaling is frequently upregulated during cardiovascular disease suggesting that identifying mechanisms for inhibiting G-protein signaling may be an effective therapeutic strategy for the treatment and prevention of disease. The work presented in this thesis is directed at two RGS proteins, RGS2 and RGS5, the two highest expressing RGS proteins in VSMCs. Despite the large number of studies published on them, there is still much to be learned about the specific G-protein pathways that each RGS protein controls. Using genetic and molecular models, we set out to identify novel regulatory pathways controlling RGS2 and RGS5 function. We hypothesize that characterizing the determinants and regulation of RGS protein function will provide a better understanding of the signaling that occurs within VSMCs under both physiologic and pathophysiologic conditions.
Our work presented in the first three studies of this thesis, describes novel regulatory pathways that are involved in regulating RGS2 protein function. We describe the production of RGS2 protein isoforms that are the result of alternative translational start site usage. Interestingly, the expression pattern of these proteins is controlled by the signaling status of the cell. In the second two studies, we identify a functional consequence of RGS2-interaction with the plasma membrane. We show that this is dependent on the interaction between the amphipathic α-helix and anionic phospholipids present in the plasma membrane. We further show that disruptions in this interaction, as occurs in the human population, can lead to reduced RGS2 function and thus potentially hypertension.
Finally, our last study focuses on the function and regulation of RGS5, the single highest expressing RGS protein in VSMCs. We show that the regulation of RGS5 is dependent, similar to other VSMC-specific genes, on the activity of SRF and myocardin. However, interestingly, RGS5 expression is further controlled by the extent of DNA methylation that occurs in its proximal promoter. We show that this is an important regulator of RGS5 expression both in development as well as during disease, specifically in-stent restenosis.
|
100 |
Inhibitory Control of Muscle Activity in SleepBrooks, Patricia 29 August 2011 (has links)
In this thesis, I examined the inhibitory control of REM sleep motor activity using both a pharmacological rat model and a genetic mouse model. I characterized the role for GABA and glycine in mediating the REM-specific suppression of muscle activity as well as their involvement in regulating the phasic muscle twitches that punctuate this atonia. Based on four specific research objectives, the following conclusions were drawn:
1. REM atonia is not directly mediated by glycinergic or GABAA-mediated inhibition. These data refute the prevailing hypothesis that REM atonia is caused by glycinergic inhibition. These receptors are, however, important in the regulation of phasic muscle twitch activity.
2. GABAB receptors can modulate REM atonia but only when acting in concert with GABAA and glycine receptors. Blockade of all three receptor types results in a partial reversal of REM atonia, suggesting a functional interaction is occurring between these receptors during REM sleep.
3. The phasic glycinergic/GABAA-mediated inhibitory drive present in REM sleep regulates the temporal pattern of phasic twitch activity that is seen across this state. I hypothesize that this progressively decreasing inhibitory input counteracts a gradually increasing excitatory input to shape the temporal distribution of muscle twitches across REM sleep.
4. A loss of normal inhibitory function may play a causal role in the pathology of REM sleep behaviour disorder (RBD), the sleep disorder characterized by excessive motor activity in REM sleep.
|
Page generated in 0.029 seconds