31 |
Cyclopentadiene-Maleimide Platform for Thermally Reversible PolymersStegall, Jeremy Brent 04 December 2014 (has links)
This dissertation describes a new platform for the synthesis of thermally reversible polymers, based on Diels-Alder reactions of bis-cyclopentadienes (bis-CPDs) and bis-maleimides (bis-MIs), that meets two main objectives. First, the bis-CPD must resist characteristic self-coupling. Second, the CPD-MI adducts should undergo the retro-Diels-Alder (rDA) reaction (i.e., thermal depolymerization) in a temperature regime that is comparable or slightly higher than that of the freely reversible bis-furan/bis-MI polymers (rDA between 80 °C and 130 °C) but much lower than that of bis-CPD homopolymers (rDA above 160 °C).
Structure-reactivity relationships gleaned from the literature and from related but as yet unpublished work in our own laboratories led to our main hypothesis that a CPD moiety bearing one sterically encumbering substituent such as isopropyl (𝑖Pr) or tert-butyl (𝑡Bu) and one electronwithdrawing substituent such as perfluoroaryl would have the desired reactivity and adduct stability in combination with an 𝑁-substituted maleimide. Synthetic considerations led to a bisCPD monomer design in which two alkylcyclopentadiene groups (alkyl = 𝑖Pr or 𝑡Bu) are connected by an octafluorobiphenylene linker.
As an initial fundamental step (Chapter 3), 1-(nonafluorobiphenyl-4’-yl)-4-tertbutylcyclopentadiene (1) was synthesized to provide a monofunctional model for the proposed difunctional CPD monomer. Reactions of 1 and 𝑁-(4-fluorophenyl)maleimide (FMI) afforded up to five regio- and stereo-isomeric adducts (of fourteen possible). Variable-temperature reactivity studies combined with NMR spectroscopic analysis, X-ray crystallography, and computational modeling enabled product distributions to be understood according to a conventional kinetic-vs- iii thermodynamic framework. These studies also predicted the microstructure of polymers derived from the proposed bis-CPD monomer, which is structurally analogous to 1, and bis-MIs. Moreover, 1 does not undergo DA self-coupling under ordinary conditions (T < 180 °C). Thermolysis studies of the major adducts revealed that the rDA becomes observable on a laboratory timescale (hours) at about 140 °C, which is at the upper end of the temperature range reported for furan+MI adducts but well below that of CPD+CPD adducts. In contrast, adducts formed from either of the analogous monosubstituted cyclopentadienes (𝑡BuC₅H₅ and C₆F₅C₅H₅) do not undergo rDA below 180 °C. These results strongly support the proposed bis-CPD monomer design.
In a second fundamental step (Chapter 4), the hypothesis that an electron-withdrawing CPD substituent would destabilize a CPD-MI adduct was further tested by reacting 𝑁-(4- fluorophenyl)maleimide with a series of triarylated cyclopentadienes (1,2,3-Ar₃C₅H₃ and 1,2,4- Ar₃C₅H₃, Ar = C₆F₅, C₆F₄CF₃, and Ar = C₅F₄N). The perfluorophenyl- and perfluorotolylsubstituted compounds were previously reported, but the perfluoropyridyl-substituted cyclopentadienes were prepared for this study using SNAr reactions of pentafluoropyridine and sodium cyclopentadienide. The least electron deficient cyclopentadiene in each series (Ar = C₆F₅) reacted the most quickly and with the highest ultimate equilibrium binding constant, confirming the electron-effects hypothesis as well as the underlying presumption that DA reactions of even relatively electron-poor CPDs with MI would behave according to normal-electron-demand principles.
In the main section of this dissertation (Chapter 5) the proposed bis(cyclopentadiene)s reacted with a series of previously reported bis(maleimides) to form linear polymers having molecular weights (Mn) up to 40 kDa. Relationships among the length and flexibility of the bis-MI linker (C₆H₁₂, C₁₂H₂₄, C₆H₄OC₆H₄, and (C₂H₄O)₂), the identity of the CPD alkyl substitutent (CHMe₂, CMe₃ and CMe₂Ph) and the glass transition temperature (Tg) as measured by differential scanning calorimetry (DSC) were understood in terms of a general model of local segmental mobility and free volume. Solution thermolysis of a model polymer system (bis-MI linker = C₆H₁₂ (7), CPD alkyl substituent = 𝑡Bu) showed a rapid decrease in molecular weight at 160 °C as determined by size exclusion chromatography (SEC). Solution thermolysis in the presence of excess FMI (as a trap for free CPD moieties) revealed that the onset temperature for rDA on a laboratory time scale (hours) was as low as 120 °C. In the bulk, thermolysis above 250 °C under vacuum led to recovery of a small portion of the bis-CPD monomer, but bulk thermolysis at 200 °C did not reveal a change in molecular weight as determined by SEC. The current interpretation of these observations is that limited mobility in these glassy polymers prohibits retro-DA decoupling. These findings largely validate the main hypothesis of this dissertation. / Ph. D.
|
32 |
Formation of Aromatic Compounds by Cyclopentadiene Moieties in Combustion ProcessesKim, Do Hyong 20 July 2005 (has links)
Polycyclic aromatic hydrocarbon (PAH) formation and growth from cyclopentadiene (CPD) moieties have been investigated using a laminar flow reactor and molecular modeling. The resonance-stabilized cyclopentadienyl radical is readily formed in flames and can participate in PAH growth to soot by reaction with the ??onds of aromatic species. Both CPD pyrolysis and computational results indicate that formation of indene and benzene is favored at low temperatures (below 750oC) and formation of naphthalene is favored at high temperatures. Reaction pathways from CPD have further been extended to PAH formation from the reaction of CPD and aromatic compounds with different types of ??onds. Results indicate that, while the major products from the pyrolysis of CPD, acenaphthylene, styrene and phenanthrene mixtures are from the reaction of CPD to itself rather than to these aromatic compounds with different ??onds, CPD does add to these compounds to produce larger PAH.
Polychlorinated naphthalene (PCN) formation from chlorinated phenols has also been studied. In combustion exhaust gas, chlorinated phenols can produce dioxin as well as PCNs. PCN and polychlorinated dibenzofuran (PCDF) congener product distributions were consistent with proposed pathways involving phenoxy radical coupling at unchlorinated ortho-carbon sites. Tautomerization of the phenoxy radical coupling and subsequent fusion via H2O loss results in PCDF formation. Competing with this reaction pathway, CO elimination and subsequent fusion via hydrogen and/or chlorine loss was found to produce PCNs. PCDF isomer distributions were found to be weakly dependent to temperature, whereas PCN isomer distributions were found to be more temperature sensitive with selectivity to particular isomers decreasing with increasing temperature.
Results of this research contribute to a better understanding of chemical mechanisms involved in the formation of toxic byproducts and soot in combustion systems.
|
33 |
FERROCENE-FUSED DERIVATIVES OF ACENES, TROPONES AND THIEPINSMaharjan, Bidhya L. 01 January 2015 (has links)
This research project is concentrated on tuning the properties of small organic molecules, namely polyacenes, tropones and thiepins, by incorporating redox-active transition metal centers π-bonded to terminal cyclopentadienyl ligands. Organometallic-fused acenequinones, tropones, thiepins and cyclopentadiene-capped polyacenes were synthesized and characterized. This work was divided into three parts: first, the synthesis of ferrocene-fused acenequinones, cyclopentadiene-capped acenequinones and their subsequent aromatization to polyacenes; second, the synthesis of ferrocene-fused tropones, thiotropones and tropone oxime; and third, the synthesis of ferrocene-fused thiepins. Ferrocene-fused quinones are the precursors to our target complexes. Our synthetic route to ferrocenequinones involved two-fold aldol condensation between 1,2-diformylferrocene and naphthalene-1,4-diol or anthracene-1,4-diol, and four-fold condensation between 1,2-diformylferrocene and 1,4-cyclohexanedione. Reduction of ferrocene-fused quinones with borane in THF resulted in ferrocene-fused dihydroacenes. Attempts to reduce ferrocene-fused acenequinones with sodium dithionite led to metal-free cyclopentadiene- (Cp-) capped acenequinones. Cp-capped acenequinones were aromatized to bis(triisopropylsilyl)ethynyl polyacenes by using lithium (triisopropylsilyl)acetylide (TIPSC≡CLi) with subsequent dehydroxylation by stannous chloride. The compounds were characterized by using spectroscopic methods and X-ray crystallography. Further, the electronic properties of these compounds were studied by using cyclic voltammetry and UV-visible spectroscopy. Cyclic voltammetry showed oxidation potentials of Cp-capped TIPS-tetracene and bis-Cp-capped TIPS-anthracene as 0.49 V and 0.61 V, respectively (vs. ferrocene/ferrocenium). The electrochemical band gaps were 2.15 eV and 2.58 eV, respectively. Organic thin-film transistor device performance of Cp-capped polyacenes was studied using solution deposition bottom-contact, bottom-gate (BCBG) device architecture and the resulting performance parameters are described herein.
Similarly, we are also interested in potential applications of metallocene-fused tropones and derivatives as organic electronic materials. Condensation of 1,2-diformylferrocene with acetone or 1,3-diphenylacetone in the presence of KOH resulted in the ferrocene-fused tropone (η5-2,4-cyclopentadien-1-yl)[(1,2,3,3a,8a-η)-1,6-dihydro-6-oxo-1-azulenyl]iron (1, R = H, E = O) and its 5,7-diphenyl derivative (1, R = Ph, E = O) as previously reported by Tirouflet. The use of piperidine as base resulted in Michael addition of piperidine to one of the carbon-carbon double bonds of the tropones. Lawesson’s reagent converted the ferrocene-fused tropones to either a thiotropone (1, R = H, E = S) or a detached 5,7-diphenylazulenethiol (2). Reaction of the ferrocene-fused thiotropone with hydroxylamine gave the corresponding oxime (1, R = H, E = NOH). Products were characterized by using spectroscopic methods and X-ray crystallography. Their electronic properties were studied by using cyclic voltammetry and UV-visible spectroscopy.
The third project involved the two-fold aldol condensation of 1,2-diformylferrocene with dimethylthioglycolate S-oxide in the presence of freshly distilled triethylamine, which gave mono- and di-dehydrated products. Deoxygenation of the ferrocene-fused thiepin S-oxide with 2-chloro-1,3,2-benzodioxaphosphole in the presence of pyridine resulted in the corresponding thiepin. The ester groups of the thiepin and thiepin S-oxide were hydrolyzed under basic conditions to give carboxylic acids, which were converted into acid chlorides using oxalyl chloride. Attempts to decarboxylate the thiepin and thiepin S-oxide diacids resulted in decomposition.
|
34 |
Reduction Pathways in Cyclopentadienyl Rhenium Dicarbonyl Dibromide Deriviatives and Indenyl Rhenium Tricarbonyl: Synthesis, Structure, and Reactivity of Anionic Cyclopentadienyl Rhenium Complexes. Ring Attack vs. Metal-Halogen ExchangeLee, Sang Woo, 1952- 12 1900 (has links)
The reactions of diagonal and lateral Cp'Re(CO)2Br2 (where Cp' = n5-C5H5, n5-C5Me5) and (n5-CgH7)Re(CO)3 with reducing agents have been examined. Hydride reduction at -78 °C is observed to occur at the Cp ring in both CpRe(CO)2Br2 isomers, affording a thermally unstable [(n4 -C5Hg)Re(CO)2Br2]- complex. The product of hydride ring attack has been characterized by low-temperature IR and 1H NMR measurements in addition to 13C NOE and heteronuclear 2D NMR measurements. Reaction of lateral CpRe(CO)2Br2 with either MeLi or PhLi affords both Cp-ring attack and metalhalogen exchange, [CpRe(CO)2Br]- (1) while t-BuLi reacts exclusively via metal-halogen exchange. diag-CpRe(CO)2Br2 reacts with the above lithium reagents to yield the same metal-halogen exchange anion. Analogous reactions using diag- and lat-Cp*Re(CO)2Br2 (where Cp* = n5-CgMe5) afford only the corresponding rhenium metal-halogen exchange anion, [Cp*Re(CO)2Br] (2). The molecular structures of 1-[Li/15-Crown-5] and 2-PPP were established by X-ray crystallography. 1-[Li/15-Crown-5] crystallizes in the monoclinic space group P21 with a = 10.860(4) A, b = 13.116(5) A, c = 7.417(3) A, B = 105.26(3)0, V = 1018.7(3) A3 , and Z = 2. 2-PPP crystallizes in the orthorhombic space group Pbca with a = 20.646(5) A, b = 17.690(5) A, c = 17.553(3) A, and z = 8. Solution FT-IR studies of 2 in THF reveal the presence of only solvent-separated ion pairs when the gegencation is Li+, K+, or PPP+ from -70 °C to room temperature. 2-Na at room temperature displays a 39:61 mixture of carbonyl oxygen-sodium and solvent-separated ion pairs, respectively. These ion pairs reveals a reversible temperature-dependent equilibrium. The equilibrium constant has been determined by IR band shape analysis over the temperature range -70 °C to room temperature and values of AH and AS are reported. The reaction of the ring-attacked complex, diag-[(n4-C5H6)Re(CO)2Br2]- with PPh3, P(OPh)3, or Me3CNC leads to the formation of the CpRe(CO)2L. Treatment of [Cp'Re(CO)2Br]- with methyltriflate, TFA, and magic ethyl yields the corresponding diag-Cp'Re(CO)2Br(R) (R = CH3, H, C2H5) complexes based on in situ IR analysis. All of these functionalized complexes decomposed in solution over a period of days to give Cp'Re(CO)3 as the only isolable product (20-30 %). The reaction of the [Cp,Re(C0)2Br]- with Bu3SnH at 60 °C leads to the formation of diag-Cp'Re(CO)2(SnBu3)2, which was also synthesized independently by the deprotonation of diag-Cp'Re(CO)2H2 with Et3N in the presence of Bu3SnBr at room temperature. The reaction of Cp'Re(CO)2Br2 with Bu3SnH at room temperature was discovered to afford the dihydride in excellent yield and, thus represents an improved synthetic route for the synthesis of diag-Cp'Re(CO)2H2. The hydride reduction of (n5-CgH7)Re(CO)3 at room temperature leads to the immediate formation of [(n5-CgH7)Re(CO)2H]- complex, which has been characterized by IR analysis and 1H and 13C NMR spectroscopy.
|
35 |
Cyclopentadiene as a Platform for Polymer Synthesis and Modification of Macromolecular SystemsCarfagna, Charles Samuel Jr. 07 December 2015 (has links)
Octafluorobiphenylene-linked bis(cyclopentadienone) was prepared bearing one perfluoro-4-tolyl and one tert-butyl substituent on the terminal diene rings. Polymerizations with 1,4- and 1,3-diethynylbenzene afforded linear Diels-Alder polyphenylenes (DAPPs) having lateral tert-butyl and perfluoro-4-tolyl substituents. The perfluoro-4-tolyl-substituted DAPPs are thermally stable, glassy solids (Tg ~ 230 deg C) that could not be cast into stable films (Mn ~ 10kDa, DPn ~ 10). New compounds perfluoro(1-phenyl-1-octanone) and perfluoro(1,1-diphenyl-1-octanol) were prepared from pentafluorophenylmagnesium bromide and perfluorooctanoyl chloride by nucleophilic acyl substitution and addition reactions.
Diels-Alder reactions of 1,2-bis(nonafluorobiphenyl-4-yl)-4-tert-butylcyclopentadiene (CPD-1) with N-(4-fluorophenyl)maleimide (FMI) were explored as models for cyclopentadiene-maleimide-based Diels-Alder polymerizations. Mixtures of five endo/exo adducts were obtained, dependent upon CPD-1 tautomers present at reaction temperatures. The thermodynamic adduct (B3LYP/6-31G* geometry optimizations) was found to be the exo DA adduct of FMI and 2,3-bis(nonafluorobiphenyl-4-yl)-5-tert-butylcyclopentadiene. Five of the six possible isomers were observed and characterized including two by single-crystal X-ray diffraction. Parallel reactions of FMI and 1,2-bis(pentafluorophenyl)-4-tert-butylcyclopentadiene yielded three crystallographically characterized isomers, and with 1H NMR and 19F NMR spectrometry, including 1-D NOE, allowed five isomeric products to be identified.
Diene CPD-1 is reactive toward nucleophiles (such as potassium 4-methylphenoxide) at the 4-positions of the C12F9 groups. Using this reactivity pattern, CPD-1 was polymerized with bis(phenol) A (BPA) and bis(phenol-A-6F) (BPAF) to form linear poly(arylene ethers) (Mn ~35 kDa) containing backbone cyclopentadienes. These polymers are glassy solids (Tg ~ 220 deg C) with good thermal stability (Td ~ 290 deg C), and they form stable, creaseable films cast from chloroform solutions. Treatment with 1.5-5.0% of 1,6-bis(N-maleimido)dodecane in N,N-dimethylacetamide (DMAc) at 165 deg C gave insoluble, solvent-swellable networks confirmed using ATR-FTIR. CPD-1 was also used as a cyclopentadiene-based linking group for chain extension of phenol-terminated methyl-PEEK oligomers (PEEKMOHs) with Mn values of 2, 5, and 10 kDa. These polymers are glassy solids (Tg ~ 156 deg C) with good thermal stability (Td ~ 400 deg C), that form stable, creaseable films from chloroform. Segmented polymers were treated with FMI in NMP, and showed functionalization density of approximately 50% by 19F NMR. Segmented polymers were also cross-linked by reaction of 1,6-bis(N-maleimido)hexane (cyclopentadiene to maleimide functional group ratio of 1:1) in NMP at 140 deg C. / Ph. D.
|
36 |
Segmented Aromatic Polymers Containing Thermally Reversible LinkagesKaurich, Kevin Joseph 07 February 2019 (has links)
This dissertation describes a general synthetic platform for segmented polymers that have main-chain reversible linkages based on cyclopentadiene-maleimide Diels-Alder chemistry. Research in the area of thermally reversible (self-healing) polymers has been an ever-expanding area of interest in the current scientific literature. However most of the emphasis has been on systems containing furan-maleimide linkages. While inexpensive and synthetically accessible, furan chemistry is mostly limited to crosslinked and hyperbranched architectures due to its relatively weak binding with maleimides at suitable propagation temperatures.
Following a general review of the literature in this area (Chapter 1) the first stage of our research (Chapter 2) entails the synthesis of 2-substituted hydroquinones, which are needed as monomers in the later stages. The novelty of our hydroquinone synthesis stems from the use of allylic and other alkenyl ethers as the source of the ring substituent, and from the utilization of catalytic hydroboration to improve atom-efficiency. We showed that hydroquinones with widely varying functionality can be prepared efficiently by our method; these findings were published in the journal Tetrahedron in 2018.
The second stage (Chapter 3) involves the use of the new hydroquinones in step-growth syntheses of hydroquinone-terminated telechelic and chain-extension of these telomers via Diels-Alder chemistry to form segmented polymers having thermally reversible linkages. The novelty of our approach rests with the use of cyclopentadiene-maleimide chemistry for the linkages, while the overall physical properties such as the glass transition temperature were established by using well-defined aromatic polymers — poly(ether ether ketones) or PEEK and poly(aryl ether sulfones) or PAES — as segments. This approach represents an important departure from earlier work in our group in which reversible linkages were present in every repeat unit of a step-growth Diels-Alder polymer that showed thermal reversibility in solution but not in the bulk, owing to glass transition temperatures that were too high. Using scratch-healing and mechanical (tensile) tests, we show that our new segmented polymers exhibit self-healing characteristics that are competitive with or superior to previously reported systems based on different Diels-Alder chemistry.
The third stage (Chapter 4) aims to explore new application areas for some of the more novel functionalized hydroquinones reported in Chapter 2. First we developed an efficient synthesis of a PAES derivative bearing 5-phenoxypentyl groups on the hydroquinone moiety. Then we showed that the 5-phenoxy group can be cleanly cleaved, post-polymerization, to afford a PAES having 5-bromopentyl substituents. The promise of our method rests with the potential of the pendant electrophiles to undergo reactions with nucleophilic reagents to post-modify these polymers further. As proof of concept, we showed that substitution of the pendant bromides with furfuryloxy groups enabled thermally reversible crosslinking with a bis-maleimide reagent to form a polymeric material that demonstrates partial scratch healing. Finally we are exploring the synthesis of new ion-containing polymers by substituting the pendant bromides with tertiary amines. / PHD / This dissertation describes a new synthetic approach to polymeric materials that can heal themselves (for example, repair small cracks that may have formed due to stress or aging) simply by heating the damaged area. Our approach uses a thermally reversible chemical reaction (called the Diels-Alder reaction) to connect several shorter polymer segments into longer chains. Upon heating, the segments can come apart, diffuse into and through the damaged area, and then rejoin. The first chapter is a review of background in the published literature as well as previous not-yet-published work in our laboratory. The second chapter describes the creation of new building-block molecules (monomers) that will help control the temperature range necessary to induce self-healing after incorporation into the polymer segments. The third chapter details the process of forming the segments, the incorporation of self-healing functionalities on the ends of the segments, the joining of the segments into longer polymeric chains, and the testing of all of the physical properties of these new materials, including their self-healing capabilities. The fourth chapter represents a preliminary study of a new method of preparing ion-containing polymers. The latter materials have potential use in various membrane technologies including fuel cell devices for the harnessing of renewable energy.
|
37 |
Metal complexes bearing pendant alkynes and metal complexes of N-heterocyclic carbenesBrayshaw, Simon Keith January 2004 (has links)
This thesis is comprised of two parts. The first part describes the synthesis of cyclopentadienyltungsten complexes containing a pendant alkyne group (I), and the subsequent photo-induced intramolecular coordination of the alkyne, forming complexes such as II. Compounds containing intramolecularly coordinated alkynes are rare, and this is the first example using cyclopentadiene as the core ligand. The second part describes the synthesis and structural characterisation of a number of novel metal complexes containing N-heterocyclic carbene ligands, some containing particular functionality for taylored applications. New methods were used to form complexes of rhodium, iridium, silver and gold (eg. III, IV). Structural and spectroscopic properties of the complexes were correlated with electronic characteristics of the ancillary ligands. A number of rhodium and iridium complexes (eg. IV) derived from imidazolium-linked cyclophanes were synthesised and structurally characterised. Complexes of N-heterocyclic carbenes with pendant ionic groups were synthesised, and a preliminary examination of their catalytic activity in water was performed. N-Heterocyclic carbenes complexes containing an electron withdrawing nitro group were synthesised and the effect of the nitro group on metal-ligand bonding was examined.
|
38 |
Versuche zur Erzeugung des Pentacyclopropylcyclopentadienyl-Kations, und Synthese von Cyclopropylierten Oligoenen, Carbo- und Heterocyclen / Attempts to the Generation of the Pentacyclopropylcyclopentadienyl Cation, and Synthesis of Cyclopropylated Oligoenes, Carbo- and HeterocyclesRedlich, Stefan 02 November 2004 (has links)
No description available.
|
39 |
Synthèse et caractérisation de phosphine, borane, amine sur plateforme ferrocène polyfonctionnelle / Synthesis and characterization of phosphane, borane, amine on polyfonctional ferrocene platformLerayer, Emmanuel 10 November 2016 (has links)
La plateforme ferrocène est fréquemment utilisée en chimie de coordination et en catalyse pour son excellente résistance aux conditions de réaction poussées. Le squelette ferrocène permet de maîtriser l’agencement de plusieurs groupes fonctionnels d’intérêt. Des ansa-ferrocènes et des ferrocènes à conformation contrainte, permettant par leur structure de contrôler une proximité des groupes fonctionnels, ont été décrits.La première partie de cette thèse traite de la synthèse de cyclopentadiényles borylés disubstitués et de leur réaction d’assemblage pour la formation de métallocènes borylés à conformation contrainte. Des analyses par RMN et des calculs par DFT ont permis de mettre en évidence la diastéréosélectivité inédite de la synthèse.À partir de cette approche, la deuxième partie traite de l’agencement de fonctions acides/bases de Lewis sur une plateforme ferrocénique à conformation contrainte. La synthèse de cyclopentadiényles (P/B) trisubstitués a été initiée. La synthèse de ligands ambiphiles (P/B) par assemblage de cyclopentadiénures et l’influence des tertio-butyles sur leur conformation ont été explorées. Une nouvelle forme de couplage de spin à trois centres sans liaison covalente, impliquant la lacune du bore dans la transmission de spin 31P31P, a été observée en RMN pour un P,P,B-ferrocène très original.La troisième partie traite de la synthèse de ferrocènes (P/B) et (N/B) à conformation contrainte. La voie de synthèse alternative et diastéréosélective proposée s’est révélée efficace alors que le rôle des tertio butyles dans le contrôle conformationnel a été démontré. L’étude de leur réactivité de type paire frustrée de Lewis a été initiée avec le CO2. / Ferrocene platforms are useful in coordination chemistry and catalysis thanks to their robustness and versatile functionalization. Ferrocene backbone allows the implantation of several key functional groups in a restricted space, inducing close proximity and potential polyfunctional cooperation (see for instance ferrocenyl polyphosphine chemistry). Ansa ferrocene and ferrocene bearing conformational control inducing groups maximizing the proximity of key groups have been widely reported.The first part of this thesis focuses on the synthesis of new borylated cyclopentadienyl, and their use in formation of borylated metallocenes bearing conformational constraints. NMR analysis and DFT calculation exhibits the diastereoselectivity of assembly reaction.The second part deals with the arrangement of several Lewis acids and bases on a constraint ferrocene platform. Synthesis of trisubstituted cyclopentadienyl (P/B) has been initiated. Synthesis of ambiphilic ligands (P/B) by assembly reaction of cyclopentadienides and the influence of tert-butyl groups on their conformation have been explored. A new 31P31P spin coupling transmitted “through-space (nonbonded spin-spin coupling transmission) involving for the first time an empty orbital has been observed.The third part describes the synthesis of heteroannular (P/B) and (N/B) ferrocene directly from ferrocene functionalization. An efficient and diastereoselective synthesis has been developed and the influence of tert-butyl groups on the conformational control has been highlighted in both solid and solution state. Studies of the frustrated Lewis pair reactivity of these new ambiphilic ligands have been initiated by addition of CO2.
|
Page generated in 0.0566 seconds