• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 236
  • 230
  • 26
  • 19
  • 18
  • 15
  • 14
  • 10
  • 8
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 674
  • 200
  • 199
  • 83
  • 81
  • 79
  • 73
  • 71
  • 63
  • 62
  • 54
  • 43
  • 42
  • 39
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Fluorescence and UV Methods for Predicting Dissolved Organic Carbon and Disinfection By-Product Formation in Drinking Water

Skeriotis, Andrew Theodoros 15 December 2011 (has links)
No description available.
432

Disinfection of secondary treated sewage by chlorine in a continuous flow reactor.

Heller, Buford Bond January 1975 (has links)
M. S.
433

Study of the Formation and Control of Disinfection By-Products Originating from a Surface Water Supply on the Volcanic Island of Guam

LaBerge, Erica 01 January 2014 (has links)
Three oxidants have been evaluated for use as alternative chemical pretreatments for Fena Lake, a surface water that supplies the U.S. Navy's Public Water System (PWS) on the volcanic island of Guam. The study consisted of two investigative components. The first and primary component included a bench-scale evaluation to study the effects of different pre-oxidant chemicals on the formation of chlorinated disinfection by-products (DBPs). The second and ancillary component included a series of water treatment and distribution system management studies that analyzed DBP formation within the treatment plant and water distribution system. The goal of this research was to reduce total trihalomethane (TTHM) and the five haloacetic acid (HAA5) formations in the PWS. In the primary component of the research, raw surface water from Fena Lake was collected by U.S. Navy personnel and shipped to University of Central Florida (UCF) laboratories for experimentation. Bench-scale tests that simulated the coagulation, flocculation, sedimentation and filtration (CSF) that comprises the Navy Water Treatment Plant (NWTP) were used to evaluate the use of two alternative pre-oxidants, potassium permanganate (KMnO4) and chlorine dioxide (ClO2) in lieu of gaseous chlorine (Cl2). The research assessed DBP formation by comparing several pretreatment scenarios, namely: (1) no pretreatment, (2) chlorine pretreatment, and (3) alternative oxidant pretreatment. KMnO4 pretreatment resulted in the lowest percent reduction of TTHMs and HAA5 relative to chlorine pretreatment, at 5.7% and 22.7%, respectively; however, this amount was still a reduction from the results demonstrated for the chlorine pretreatment condition. Without using a pre-oxidant, TTHM and HAA5 formation were reduced by 22.8% and 37.3%, respectively, relative to chlorine pretreatment. Chlorine dioxide demonstrated the greatest TTHM and HAA5 reduction relative to chlorine pretreatment at 34.4% and 53.3%, respectively. The second component of research consisted of a series of studies that evaluated distribution system operations and management alternatives to identify opportunities that could achieve DBP reduction within the PWS. Three concerns that were addressed were the NWTP's compliance with the U.S. Environmental Protection Agency's (USEPA's) Stage 2 Disinfectants/Disinfection By-Products (D/DBP) Rule, variable hydraulic detention times within a small subdivision in the distribution system, and severe weather. It was determined that: (1) A decision based on in-plant studies to cease prechlorination at the NWTP resulted in a decrease in TTHMs and HAA5s throughout the distribution system by 62% and 75%, respectively; (2) A fluoride tracer study led to the discovery of a valved pipeline responsible for elevated DBPs because of excessive water age that when exercised and managed resolved intermittent DBP spikes in the PWS; and (3) when the NWTP's ballasted floc clarifier (BFC) was operated in-series prior to the conventional CSF process during severe weather conditions the TTHM and HAA5 were below 39 ug/L and 29 ug/L, respectively, proving BFC in-series is a practical option for the plant during severe weather.
434

Nitrification Investigation And Modeling In The Chloraminated Drinking Water Distribution System

Liu, Suibing 01 January 2004 (has links)
This dissertation consists of five papers concerning nitrification in chloraminated drinking water distribution systems in a one and a half year field study. Seven finished waters were produced from different treatment processes and distributed to eighteen pilot distribution systems (PDSs) that were made pipes taken from actual distribution systems. Unlined cast iron (UCI), galvanized steel (G), lined cast iron (LCI), and PVC pipes were used to build the PDSs. All finished waters were stabilized and chloraminated before entering the PDSs. This dissertation consists of five major parts. (1) System variations of nitrates, nitrites, DO, pH, alkalinity, temperature, chloramine residuals and hydraulic residence times (HRT) during biological nitrification are interrelated and discussed relative to nitrification, which demonstrated Stoichiometric relationships associated with conventional biochemical nitrification reactions. Ammonia is always released when chloramines are used for residual maintenance in drinking water distribution systems, which practically insures the occurrence of biological nitrification to some degree. Biological nitrification was initiated by a loss of chloramine residual brought about by increasing temperatures at a five day HRT, which was accompanied by DO loss and slightly decreased pH. Ammonia increased due to chloramine decomposition and then decreased as nitrification began. Nitrites and nitrates increased initially with time after the chloramine residual was lost but decreased if denitrification began. Dissolved oxygen limited nitrifier growth and nitrification. No significant alkalinity variation was observed during nitrification. Residual and nitrites are key parameters for monitoring nitrification in drinking water distribution systems. (2) Using Monod kinetics, a steady state plug-flow kinetics model was developed to describe the variations of ammonia, nitrite and nitrate-N concentrations in a chloraminated distribution system. Active AOB and NOB biomass in the distribution system was determined using predictive equations within the model. The kinetic model used numerical analysis and was solved by C language to predict ammonia, nitrite, nitrate variation. (3) Nitrification control strategies were investigated during an unexpected episode and controlled study in a field study. Once nitrification began, increasing chloramine dose from 4.0 to 4.5 mg/L as Cl2 and Cl2:N ratio from 4/1 to 5/1 did not stop nitrification. Nitrification was significantly reduced but not stopped, when the distribution system hydraulic retention time was decreased from 5 to 2 days. A free chlorine burn for one week at 5 mg/L Cl2 stopped nitrification. In a controlled nitrification study, nitrification increased with increasing free ammonia and Cl2:N ratios less than 5. Flushing with increased chloramine concentration reduced nitrification, but varying flush frequency from 1 to 2 weeks had no effect on nitrification. (4) HPC variations in a chloraminated drinking water distribution system were investigated. Results showed average residual and temperature were the only water quality variables shown to affect HPC change at a five day distribution system hydraulic residence time was five days. Once nitrification began, HPC change was correlated to HRT, average residual and generated nitrite-N in the distribution system. (5) Biostability was assessed for water treatment processes and distribution system pipe by AOCs, BDOCs, and HPCs of the bulk water, and by PEPAs of the attached biofilms. All membrane finished waters were more likely to be biologically stable as indicated by lower AOCs. RO produced the lowest AOC. The order of biofilm growth by pipe material was UCI > G > LCI > PVC. Biostability decreased as temperature increased.
435

Comparison Of Thm Formation During Disinfection: Ferrate Versus Free Chlorine For Different Source Waters

Mukattash, Adhem 01 January 2007 (has links)
The objective of the study was to compare the trihalomethanes (THMs) produced from ferrate with hypochlorite and to determine how different the THM production would be for a given degree of disinfection (3 log reduction in Heterotrophic Plate Count (HPC)). Different water samples were collected from Lake Claire, Atlantic Ocean, and secondary effluent from an advanced wastewater treatment plant. THM formation was determined using a standard assay over 7 days at room temperature. In addition samples were tested for Total Coliform Escherichia coli (TC/E.coli), and heterotrophic bacteria using HPC by spreadplating on R2A agar. Dissolved organic carbon (DOC) was measured as well. Dosages of 2, 5, and 10 ppm of hypochlorite and ferrate were used for Lake Claire and Atlantic Ocean water, while 1, 2, and 5 ppm dosages were used for wastewater treatment effluent. Ferrate resulted in 48.3% ± 11.2% less THM produced for the same level of disinfection (i.e. approximately 3 logs reduction in HPC). Oxidation of DOC was relatively small with a 6.1 to 11.6 % decrease in DOC being observed for ferrate doses from 2 to 10 mg/L. Free chlorine oxidation of DOC was negligible.
436

Comparison Of The Effectiveness Of Alternative Ferrate (vi) Synthesis Formulas As Disinfectants For Wastewater And River Water

Ginart, Rachelle 01 January 2008 (has links)
Ferrate (VI) has been studied as an alternative chemical to disinfect water and wastewater in recent years. The disinfection effectiveness of two different wet oxidation ferrate (VI) synthesis formulas in wastewater and Econlockhatchee River water was evaluated. Ferrate (VI) is synthesized by addition of ferric chloride to a mixture of sodium hydroxide and calcium hypochlorite (refer to U.S. Patent 6,790,429). One ferrate (VI) synthesis formula uses below the stoichiometric requirement of hypochlorite (Low Chlorine Formula) while the other ferrate (VI) synthesis formula uses more than the stoichiometric requirement of hypochlorite (Standard Chlorine Formula). For applications requiring low chlorine residual effluent quality, the Low Chlorine Formula intuitively is a more suitable disinfectant than the Standard Formula. For applications where chlorine residual is of little or no significance, the Standard Formula is logically a more suitable disinfectant due to lower production cost and production of higher ferrate (VI) concentrations than the Low Chlorine Formula. The total chlorine concentration, unfiltered and filtered ferrate (VI) concentration, and dissolved organic carbon concentration before and after treatment using both ferrate (VI) formulas in wastewater and Econ River water was measured at a contact time of 30 minutes. Disinfection capabilities were measured by comparing the quantity of Heterotrophic bacteria, Total Coliform, Escherichia coli, and Enterococcus bacteria pre-ferrate (VI) to post-ferrate (VI) at dosages of 2, 4, and 7.5 mg/L as ferrate (VI) using both ferrate (VI) formulas. The rate of disappearance of both ferrate (VI) formulas in wastewater at an unadjusted pH and pH of 6.0-6.35 was determined. In addition the total oxidant absorbance and total chlorine concentration were measured over a 30-minute period. Both ferrate (VI) formulas were effective at inactivating Total Coliform, E. Coli, Enterococcus, and heterotrophic bacteria at a 30-minute contact time and lowering DOC concentrations in Econlockhatchee River water and secondary wastewater. The Standard Formula demonstrated better disinfection at lower dosages than the Low Chlorine Formula. In both ferrate (VI) formulas, there was a presence of an instantaneous demand of ferrate (VI) and a first-order reaction rate of ferrate (VI) over 30 minutes. The chlorine residual of 7.5 mg/L ferrate (VI) dose in wastewater at a 30-minute contact time was 0.2 to 0.6 mg/L Cl2 for the Low Chlorine Formula and 0.8 to 1.4 mg/L Cl2 for the Standard Formula. These experiments indicate that both ferrate (VI) formulas can serve as effective environmentally friendly disinfectants for wastewater and Econ River water.
437

EXPERIMENTAL MEASUREMENTS ON DEVICES FOR REAL TIME INACTIVATION OF AIRBORNE BIOLOGICAL THREATS

Jason Alexander Randall (17522640) 02 December 2023 (has links)
<p dir="ltr">Prevention of the spread of diseases caused by airborne biological pathogens is of great concern. This was highlighted by the Covid-19 Pandemic, which was caused by the SARS-CoV-2 virus. One method for preventing the transmission of airborne pathogens is UV-C irradiation, which has been proven to effectively inactivate a wide range of airborne pathogens, including influenza viruses and coronaviruses. Disinfection of air using UV-C is usually employed through upper-room Ultraviolet Germicidal Irradiation (UVGI), UV-C based air cleaners in HVAC ducts, or stationary cabinets. In the research presented herein, near-field applications of UV-C disinfection are explored through implementation in personal protective equipment.</p><p dir="ltr">A series of personal protective devices were developed for real-time inactivation of airborne pathogens in military or civilian applications. The devices use UV-C radiation from low-pressure mercury lamps (254 nm) and UV-C LEDs (nominally 277 or 282 nm) to inactivate airborne pathogens that are inhaled or exhaled by users, thereby reducing the risk of disease transmission. The devices employ Porex PMR20, a material highly reflective of UV-C radiation, to promote photon recycling and improve the fluence rate fields inside the reactors. To quantify the efficacy of these UV-C devices, testing procedures were developed and applied. A two-part procedure was employed: (1) measurement of the fluence rate using the Micro Fluorescent Silica Device (MFSD) together with a positioning device and (2) biological experiments using T1 bacteriophage as an aerosolized challenge agent to quantify virus inactivation.</p><p dir="ltr">The fluence rate measurements were completed by fixing the location of the MFSD probe and moving the reactors to precise locations using the positioning device. The MFSD measurements were converted to fluence rate using measurements from an NIST-calibrated radiometer and collimated UV-C sources. When comparing the measurements with and without the PMR20, the local fluence rate for the LED reactors was found to be amplified by up to 10 times the value without the PMR20. A central peak was also found for both LED reactors, which was not present in measurements without the PMR20. Of the two LED reactors, the Nichia Reactor was found to have higher peaks in fluence rate, probably due to the higher output from the LEDs when compared to the JLED LEDs. The LP Hg Pod was found to have less significant amplification from the PMR20, with the maximum amplification being only 3 times the value without PMR20. The fluence rate near the walls lined with PMR20 was found to have the highest amplification for the Pod reactor, due to the lamp being located at the center of the reactor (unlike the LED reactors, where UV-C sources were positioned along the reactor walls).</p><p dir="ltr">The biological experiments were conducted using aerosolized T1 bacteriophage as a challenge agent. T1 was selected for these experiments because it has been shown to be more resistant to inactivation at the wavelengths of interest than most airborne pathogens; as such, T1 is a conservative surrogate for airborne pathogens in these applications. Experiments were conducted first at one flow rate and subsequently at a range of flow rates to quantify the effectiveness of the reactors and the impact the PMR20 on the inactivation response. When tested at the lowest flow rate of 2.5 L/min, all three reactors were found to provide inactivation at least as effective as the nominal removal provided by an N95 mask (95% or 1.3 log<sub>10</sub> units). The LP Hg Pod reactor was found to provide at least this level of inactivation (1.3 log<sub>10</sub> units) at flow rates up to 52.5 L/min when PMR20 lined the reactor. When tested without the PMR20, the loss in inactivation was substantial at 52.5 L/min but not at the lower flow rates.</p><p dir="ltr">The testing protocol developed and applied in this project could be applied to a range of other reactors intended for disinfection of air. A need exists to standardize testing and validation methods for UV-C based reactors and devices that are used to disinfect air. As such, the methods described herein may allow translation to other UV-C based devices.</p>
438

Investigation of Microbiological Regrowth after Ultraviolet Disinfection

Ma, Daniel T. January 2020 (has links)
No description available.
439

A Laboratory Scale Assessment of the Effect of Chlorine Dioxide Pre-Oxidation on Disinfection By-Product Formation for Two Surface Water Supplies

Rodriguez, Angela 01 May 2015 (has links)
Chemical disinfection is the cornerstone of safe drinking water. However, the use of chemical disinfection results in the unintentional formation of disinfection by-products (DBPs), an outcome of reactions between the disinfectant and natural organic matter (NOM) present in the native (raw) water. DBPs are suspected carcinogens, and as such, have been regulated by the U.S. Environmental Protection Agency (USEPA) under the Safe Drinking Water Act (SDWA). This document reports the results of a study that investigated the use of chlorine dioxide pre-oxidation for the reduction of DBP precursors, and subsequently, DBP formation potential (FP). To determine the effectiveness of the chlorine dioxide pre-oxidation process, two surface waters were studied: raw water from Lake Claire (Orlando, FL) and raw water from the East Maui Watershed (Makawao, HI). Lake Claire water contains approximately 11-12 mg/L of NOM and 35 mg/L as CaCO3 of alkalinity, while the Maui source water typically ranges between 7-8 mg/L of NOM with 2-10 mg/L as CaCO3 of alkalinity. Two chlorine dioxide doses were investigated (0.75 mg/L and 1.5 mg/L) and compared to a control to quantify the effectiveness of this advanced pre-treatment oxidation process. Water collected at each site was subject to the following treatment process: oxidation, coagulation, flocculation, sedimentation, ultrafiltration, and disinfection with free chlorine. Disinfection by-product formation potential (DBPFP) analysis showed that ClO2 pre-oxidation, in general, increased the 7-day DBPFP of the East Maui water, and decreased the 7-day DBPFP of the Lake Claire source water. For the Lake Claire water at the higher ClO2 dose, total trihalomethanes (TTHM) were decreased by 37 percent and the five regulated haloacetic acids (HAA5) by 23 percent. For the East Maui source water at the higher ClO2 dose, TTHM’s were increased by 53 percent and HAA5’s by 60 percent. Future research should determine the effect of alkalinity on DBPFP, which could be the reason why chlorine dioxide pre-oxidation caused one water source’s DBPFP to decrease and the other to increase.
440

UVC disinfection of COVID-19 and associated bacteria on personal protective equipment

Smith, Ryden Christopher 30 April 2021 (has links)
The COVID-19 pandemic has been an unprecedented public health crisis around the world and has created novel needs in the healthcare industry. Primary among these needs is a vast shortage in personal protective equipment (PPE) such as masks and gloves. This is problematic due to the near constant of COVID-19 cases in hospitals around the United States. In an effort to meet the need for more PPE, new disinfection techniques must be found to "recycle" used PPE. UVC light has previously been used by healthcare facilities for years to disinfect surfaces such as stainless steel and are frequently used in operating room sterilization and dentist offices. UVC light's effectiveness on porous materials such as masks has not been substantially investigated prior to the COVID-19 pandemic. This work shows the effectiveness and efficiency of UVC disinfection on porous surfaces for the COVID-19 virus and other bacteria.

Page generated in 0.1034 seconds