• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 199
  • 125
  • 124
  • 22
  • 19
  • 11
  • 7
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 576
  • 115
  • 107
  • 101
  • 84
  • 82
  • 77
  • 72
  • 69
  • 68
  • 64
  • 52
  • 50
  • 47
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

LANDFILL LEACHATE TREATMENT BY ADVANCED ELECTROCHEMICAL OXIDATION PROCESS COUPLED WITH PRETREATMENTS

Unknown Date (has links)
Advanced electrochemical oxidation processes have emerged as a promising method for the destruction of persistent organic material in variable waste streams. Although the process has been successfully employed for wastewater treatment applications, high energy requirements, and the risk of formation of undesirable by-products may limit its application in the field of leachate treatment. This study focuses on the investigation of the feasibility of removing organics and ammonia by electrochemical oxidation coupled with ozone, Fenton or lime. Landfill leachate was treated by two different bench scale electrochemical oxidation reactors coupled with ozone oxidation, Fenton coagulation or lime precipitation. The electrochemical oxidation was conducted using a titanium anode coated with multi-metal oxides (MMO) at three-different current densities for different durations. Treatment performance was determined based on the removal of COD, ammonium-N, and turbidity. A three-level factorial design was established, and response surface methodology (RSM) was introduced to determine the optimum process parameters. The results suggest that the process can remove appreciable amounts of ammonium-N and COD in a very short time, demonstrating that the process is effective in rapidly degrading recalcitrant organics in leachate. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2019. / FAU Electronic Theses and Dissertations Collection
42

Lime pretreatment and enzymatic hydrolysis of corn stover

Kim, Se Hoon 29 August 2005 (has links)
Renewable energy sources, such as lignocellulosic biomass, are environmentally friendly because they emit less pollution without contributing net carbon dioxide to the atmosphere. Among lignocellulosic biomass, corn stover is a very useful feedstock to economically produce environmentally friendly biofuels. Corn stover was pretreated with an excess of calcium hydroxide (0.5 g Ca(OH)2/g raw biomass) in non-oxidative and oxidative conditions at 25, 35, 45, and 55oC. The optimal condition is 55oC for 4 weeks with aeration, determined by yields of glucan and xylan. The overall yields of glucose (g glucan hydrolyzed/100 g original glucan) and xylose (g xylan hydrolyzed/100 g original xylan) were 91.3 and 51.8 at 15 FPU/g cellulose, respectively. Furthermore, when considering the dissolved fragments of glucan and xylan in the pretreatment liquors, the overall yields of glucose and xylose were 93.2 and 79.5 at 15 FPU/g cellulose, respectively. The pretreatment liquor has no inhibitory effect on ethanol fermentation using Saccharomyces cerevisiae D5A. At the recommended condition, only 0.073 g Ca(OH)2 was consumed per g of raw corn stover. Under extensive delignification conditions, 87.5% of the initial lignin was removed. Extensive delignfication required oxidative treatment and additional lime consumption. Deacetylation quickly reached a plateau within 1 week. Delignification highly depended on temperature and the presence of oxygen. Lignin and hemicellulose were selectively removed, but cellulose was not affected by lime pretreatment in mild temperatures (25 ?? 55oC). The delignification kinetic models of corn stover were empirically determined by three simultaneous first-order reactions. The activation energies for the oxidative delignification were estimated as 50.15 and 54.21 kJ/mol in the bulk and residual phases, respectively. Crystallinity slightly increased with delignification because amorphous components (lignin, hemicellulose) were removed. However, the increased crystallinity did not negatively affect the 3-d sugar yield of enzyme hydrolysis. Oxidative lime pretreatment lowered the acetyl and lignin contents to obtain high digestibility, regardless of crystallinity. The enzymatic digestibility of lime-treated biomass was affected by the change of structural features (acetylation, lignification, and crystallization) resulting from the treatment. The non-linear models for 3-d hydrolysis yields of glucan and xylan were empirically established as a function of the residual lignin fraction for the corn stover pretreated with lime and air.
43

Study on the dissolution of lime and dolomite in converter slag

Deng, Tengfei January 2012 (has links)
In the present study, the dissolution mechanism and rate of lime, limestone and dolomite in converter slag was studied. Lime dissolution in stagnant slag was studied first and dissolution of lime, limestone and dolomite under forced convection were carried out by new experimental setup. Dissolution of different CaO samples into stagnant converter slags was carried out in a closed tube furnace at 1873K. In the case of CaO-‘FeO’-SiO2 slag, the dissolution of CaO rod in the stagnant slag was retarded after the initial period (2 minutes). A dense layer of 2CaO∙SiO2 was found to be responsible for the total stop of the dissolution. It could be concluded that constant removal of the 2CaO∙SiO2 layer would be of essence to obtain high dissolution rate of lime. In this connection, it was found necessary to study the dissolution of lime in moving slag. In order to obtain reliable information of lime dissolution under forced convection, the commonly used rotating rod method was examined. Both CFD calculation and cold model experiments showed evidently that the mass transfer due to radial velocity introduced by forced convection was zero if the rod was centrally placed in a cylindrical container. A new experimental design was therefore developed. A cube was placed in the crucible and stirred by Mo rod along with slag. The whole system could be quenched in order to maintain the state of the system at high temperature. A linear relationship between normalized length and time was obtained for lime dissolution. Different lime samples showed big difference in dissolution rate. It was found that the main mechanism of CaO dissolution in slag was due to the removal of 2CaO∙SiO2 layer. Decomposition and dissolution of limestone and dolomite in slag at 1873 K were studied. The decomposition was carried out both in argon and in slag under argon atmosphere. The decomposition process was simulated using Comsol. The results showed evidently that the decomposition of limestone and dolomite was controlled mostly by heat transfer. It was also found that the decomposition of limestone product: CaO had very dense structure, no matter the sample was decomposed in slag or in argon. The slow decomposition and the dense CaO layer would greatly hinder the dissolution of lime in the slag. The present results clearly indicate that addition of limestone instead of lime would not be beneficial in converter process. Discontinuous 2CaO∙SiO2 layer along with MgO∙Fe2O3 particles was found on the surface of the dolomite sample. Some 2CaO∙SiO2 islands were found in the vicinity of the sample in the slag, which revealed therefore that the dissolution was dominated by the peeling-off of the layer of 2CaO∙SiO2-MgO∙Fe2O3 mixture. 2CaO∙SiO2, (Mg, Fe)Oss along with super cooled liquid phases were found inside dolomite sample close to the surface. 2CaO∙SiO2 phase was replaced gradually by 3CaO∙SiO2 towards the centre of the decomposed sample. / <p>QC 20120829</p>
44

Kinetic Modeling and Assessment of Lime Pretreatment of Poplar Wood

Sierra Ramirez, Rocio 2010 December 1900 (has links)
Because of widespread availability, low cost, sustainability, and potential supply far greater than that of food crops, lignocellulosic biomass is one of the most promising feedstocks for producing biofuels through fermentation processes. Among lignocellulose choices, poplar wood is appealing because of high energy potential, above-average carbon mitigation potential, fast growth, and high yields. Lignocellulose structural features limit accessibility of enzymes or microorganisms. To overcome these limitations, pretreatment is required. Among several choices of pretreatment, lime pretreatment is preferred because lime is the cheapest alkali, safest to handle, easy to recover, and compatible with oxidants. The main effect of lime pretreatment is to degrade lignin, which occurs with good carbohydrate preservation and is enhanced with oxidants. Among several choices of oxidant, oxygen and air are preferred because of low cost and widespread availability. This study systematically assesses the effects of lime pretreatment on poplar wood using four different modes: long-term oxidative, long-term non-oxidative, short-term constant pressure, and short-term varying pressure. Long-term pretreatments use temperatures between 25 and 65° C, air if oxidant is used, and last several weeks. Short-term pretreatments use temperatures between 110 and 180° C, pressurized oxygen, and last several minutes to hours. Pretreatment was assessed on the basis of 3-day enzymatic digestibility using enzyme loadings of 15 FPU/g glucan in raw biomass. The results were used to recommend pretreatment conditions based on highest overall yield of glucan (after combined pretreatment and enzymatic hydrolysis) for each pretreatment mode. For each pretreatment mode, kinetic models for delignification and carbohydrates degradation were obtained and used to determine the conditions (temperature, pressure, and time) that maximize glucan preservation subjected to a target lignin yield. This study led to conclude that the most robust, and selective mode of lime pretreatment is varying pressure.
45

Investigations of Biomass Pretreatment and Submerged Fixed-bed Fermentation

Meysing, Daniel 2011 December 1900 (has links)
To improve the MixAlco process and biomass pretreatment, five studies were conducted. Three studies related to fermentation, whereas the other two investigated the effectiveness of shock tube pretreatment (STP) coupled with oxidative lime pretreatment (OLP). In the first study, the constant-selectivity assumption used in the continuum particle distribution model (CPDM) was determined to be invalid. During a 32-day batch fermentation, selectivity increased from 0.10 to 0.40 g acid/g non-acid volatile solid (NAVS) digested. Future revisions to CPDM should incorporate a non-constant selectivity term. In the second study, a revised procedure was developed to provide a more accurate determination of moisture content. Conventional drying at 105 degrees C allowed product acids to vaporize with water, which introduced errors. Using the revised procedure, calcium hydroxide or sodium hydroxide was added to samples at a concentration of 0.01 g base/g sample, which retained acids in the sample. The mass of additional retained material closely matched that of the additional retained acid. Three related studies involving biomass pretreatment were performed. In the first, recommended parameters for pretreating sugarcane bagasse with OLP and STP were determined. Recommended OLP parameters were 130 degrees C, 6.9-bar O2, and 2-h duration. The effects of solids concentration, liquid fill volume, particle size, type of shotgun shell, number of shocks, and pretreatment order were investigated. Liquid fill volume, particle size, type of shotgun shell, and pretreatment order were significant variables, whereas solids concentration and number of shocks were not. Recommended OLP parameters were used as a basis for an additional experiment. To simulate industrial-scale pile fermentation, fixed-bed batch fermentation of OLP + STP sugarcane bagasse was performed in 1-L PVC fermentors. Rubber mulch was used as a structural support material to prevent filter plugging, which had been reported in previous work. After 42 d, acid concentration reached 8 g/L with yield approximately 0.1 g acid/g NAVS fed. Poor fermentation performance was caused by short solid-liquid contact time and poor pH control. A third biomass pretreatment experiment investigated the potential of pretreated corn stover as a potential ruminant feed. Five samples (raw, OLP, STP, OLP + STP, and STP + OLP) were analyzed for composition and in vitro digestibility. STP followed by OLP increased neutral detergent fiber (NDF) digestibility from 49.3 to 79.0 g NDF digested/100 g NDF fed. On an organic matter basis, STP + OLP corn stover plus water-soluble extractives had a total digestible nutrients (TDN) of 74.9, nearly reaching corn grain at 88.1.
46

Lime pretreatment and enzymatic hydrolysis of corn stover

Kim, Se Hoon 29 August 2005 (has links)
Renewable energy sources, such as lignocellulosic biomass, are environmentally friendly because they emit less pollution without contributing net carbon dioxide to the atmosphere. Among lignocellulosic biomass, corn stover is a very useful feedstock to economically produce environmentally friendly biofuels. Corn stover was pretreated with an excess of calcium hydroxide (0.5 g Ca(OH)2/g raw biomass) in non-oxidative and oxidative conditions at 25, 35, 45, and 55oC. The optimal condition is 55oC for 4 weeks with aeration, determined by yields of glucan and xylan. The overall yields of glucose (g glucan hydrolyzed/100 g original glucan) and xylose (g xylan hydrolyzed/100 g original xylan) were 91.3 and 51.8 at 15 FPU/g cellulose, respectively. Furthermore, when considering the dissolved fragments of glucan and xylan in the pretreatment liquors, the overall yields of glucose and xylose were 93.2 and 79.5 at 15 FPU/g cellulose, respectively. The pretreatment liquor has no inhibitory effect on ethanol fermentation using Saccharomyces cerevisiae D5A. At the recommended condition, only 0.073 g Ca(OH)2 was consumed per g of raw corn stover. Under extensive delignification conditions, 87.5% of the initial lignin was removed. Extensive delignfication required oxidative treatment and additional lime consumption. Deacetylation quickly reached a plateau within 1 week. Delignification highly depended on temperature and the presence of oxygen. Lignin and hemicellulose were selectively removed, but cellulose was not affected by lime pretreatment in mild temperatures (25 ?? 55oC). The delignification kinetic models of corn stover were empirically determined by three simultaneous first-order reactions. The activation energies for the oxidative delignification were estimated as 50.15 and 54.21 kJ/mol in the bulk and residual phases, respectively. Crystallinity slightly increased with delignification because amorphous components (lignin, hemicellulose) were removed. However, the increased crystallinity did not negatively affect the 3-d sugar yield of enzyme hydrolysis. Oxidative lime pretreatment lowered the acetyl and lignin contents to obtain high digestibility, regardless of crystallinity. The enzymatic digestibility of lime-treated biomass was affected by the change of structural features (acetylation, lignification, and crystallization) resulting from the treatment. The non-linear models for 3-d hydrolysis yields of glucan and xylan were empirically established as a function of the residual lignin fraction for the corn stover pretreated with lime and air.
47

Long-term lime pretreatment of poplar wood

Sierra Ramirez, Rocio 12 April 2006 (has links)
Lignocellulosic biomass (e.g., poplar wood) provides a unique and sustainable resource for environmentally safe organic fuels and chemicals. The core of this study is the pretreatment step involved in bioconversion processes. Pretreatment is required to realize high yields vital to commercial success. The focus of the pretreatment step is to methodically change key features of the biomass to favor enzymatic hydrolysis. This work assesses the compositional changes due to oxidative and non-oxidative longterm lime pretreatment of poplar wood (up to 4 weeks of pretreatment) at mild temperatures (25ºC to 65ºC), and their effect on the enzymatic yield of glucan and xylan. The most important pretreatment yield of lignin was 54 g lignin remaining/100 g lignin in raw biomass, and was accomplished for 4-week lime pretreatment at 65ºC in oxidative conditions. The corresponding pretreatment yields of glucan and xylan were 85.9 g glucan recovered/100 g glucan in raw biomass and 80.2 g xylan recovered/100 g xylan in raw biomass respectively. For poplar wood oxidatively pretreated with lime for 4 weeks at 65ºC and enzymatically hydrolyzed with an enzyme loading of 15 FPU/g glucan in raw biomass during a 3-day period, the best overall yields of glucan and xylan, were 80.7 g glucan hydrolyzed/100 g glucan in raw biomass and 66.9 g xylan hydrolyzed/100 g xylan in raw biomass respectively. The corresponding hydrolysis yields were 94.0 g glucan hydrolyzed/100 g glucan in treated biomass and 83.5 g xylan hydrolyzed/100 g xylan in treated biomass respectively. Because there is a previous study of long-term lime pretreatment of corn stover (Kim, 2004), the data obtained in this work show the effect of using woody lignocellulose as substrate. From the comparison, resulted that in the case of poplar wood oxidatively pretreated at 65ºC for 4 weeks, less lignin was removed and more carbohydrates were solubilized, however the hydrolysis yield of glucan was almost equal and the hydrolysis yield of xylan was higher than the reported by Kim for corn stover oxidatively pretreated at 55ºC for 4 weeks. The overall yield of glucan resulted lower in the case of poplar wood because of the lower pretreatment yield of glucan. Thus, it is important to complete the mass balances including an analysis on the pretreatment liquor to determine if the solubilized glucan was degraded.
48

The ultra-high lime with aluminum process for removing chloride from recirculating cooling water

Abdel-wahab, Ahmed Ibraheem Ali 30 September 2004 (has links)
Chloride is a deleterious ionic species in cooling water systems because it is important in promoting corrosion. Chloride can be removed from cooling water by precipitation as calcium chloroaluminate using ultra-high lime with aluminum process (UHLA). The research program was conducted to study equilibrium characteristics and kinetics of chloride removal by UHLA process, study interactions between chloride and sulfate or silica, and develop a model for multicomponent removal by UHLA. Kinetics of chloride removal with UHLA was investigated. Chloride removal was found to be fast and therefore, removal kinetics should not be a limitation to applying the UHLA process. Equilibrium characteristics of chloride removal with UHLA were characterized. Good chloride removal was obtained at reasonable ranges of lime and aluminum doses. However, the stoichiometry of chloride removal with UHLA deviated from the theoretical stoichiometry of calcium chloroaluminate precipitation. Equilibrium modeling of experimental data and XRD analysis of precipitated solids indicated that this deviation was due to the formation of other solid phases such as tricalcium hydroxyaluminate and tetracalcium hydroxyaluminate. Effect of pH on chloride removal was characterized. Optimum pH for maximum chloride removal was pH 12 ± 0.2. Results of equilibrium experiments at different temperatures indicated that final chloride concentrations slightly increased when water temperature increased at temperatures below 40oC. However, at temperatures above 40oC, chloride concentration substantially increased with increasing water temperature. An equilibrium model was developed to describe chemical behavior of chloride removal from recycled cooling water using UHLA. Formation of a solid solution of calcium chloroaluminate, tricalcium hydroxyaluminate, and tetracalcium hydroxyaluminate was found to be the best mechanism to describe the chemical behavior of chloride removal with UHLA. Results of experiments that studied interactions between chloride and sulfate indicated that sulfate is preferentially removed over chloride. Final chloride concentration increased with increasing initial sulfate concentration. Silica was found to have only a small effect on chloride removal. The equilibrium model was modified in order to include sulfate and silica reactions along with chloride in UHLA process and it was able to accurately predict the chemical behavior of simultaneous removal of chloride, sulfate, and silica with UHLA.
49

A Means Not An End : Designing Co-creation Experience For Library Service Innovations

Tang, Carol January 2013 (has links)
Could we have a better way to innovate future library service, so that more creative ideas could be embraced and more people can get involved? Many libraries around the world is in search of a new position and innovating new service in order to stay relevant to their users. What if more people who care enough can join forces and be part of it? In this project, my goal is to design a workshop model and toolkit for library activists to initiate a co-creative experience. I hope people who experienced the creation of workshop can be confident enough to put their creativity into actions. And ultimately more library lovers can impact the way library service is developed. Thanks to the great support from Umeå University Library, LIme — A toolkit for library activist to create effective workshop experience, is created in form of a physical toolkit in combination with a mobile digital platform
50

CO2 Capture from Dilute Sources via Lime-Based Sorbents

Samari, Mohammad 30 April 2014 (has links)
Direct capture of CO2 from ambient air is a developing technology, which is capable of removing CO2 directly from the atmosphere. Moreover, this technology is independent from sources of CO2 emissions. Hence, it can be set up at locations where pure stream of CO2 is needed such as in enhanced oil recovery. In this research, the performance of pelletized and natural limestone for CO2 capture from air in a fixed bed is studied. To compare the performance of sorbents for air capture, the effects of particle type (natural limestone and pelletized limestone), particle size (250-425 µm and 425-600 µm), gas flowrate (0.5 L/min and 1 L/min), and relative humidity, on the breakthrough time, breakthrough shape, and the global reaction rate are examined. Moreover, carbonation decay of sorbents over series of capture and regeneration cycles is studied. If the inlet stream (air) is humidified at 50% relative humidity, but the lime sorbents are not pre-hydrated, an axially non-uniform carbonated bed results. This phenomenon is due to the partial carbonation of sorbents at the first layers of the bed. While there is a competition between CO2 and water to react with CaO, partial carbonation reaction on the surface of the sorbents not only prevents further hydration, but also decreases the reaction rate at the surface. However, in comparison with a dry system where relative humidity was negligible and sorbents were not pre-hydrated, the observed carbonation conversion was higher. The best results were seen from experiments with pre-hydrated sorbents and humidified inlet stream. The smaller sorbent particles had a better performance (sharper breakthrough curve and longer breakthrough time) due to their greater surface area. A gas-solid reaction model was fitted to the breakthrough curves. Since at the beginning of carbonation there is no resistance of the product layer, it can be assumed that the process is reaction controlled. While after formation of the product layer (CaCO3), it becomes diffusion controlled. Results from fitted data also confirmed these conclusions. Moreover, each of sorbent went through 9 cycles and after each cycle the carbonation conversion of the sorbents was measured by TGA and the surface area by BET.

Page generated in 0.0497 seconds