• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 357
  • 59
  • 57
  • 57
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 639
  • 113
  • 100
  • 97
  • 86
  • 75
  • 65
  • 61
  • 60
  • 58
  • 55
  • 51
  • 51
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Using Colloidal Nanocrystal Matrix Encapsulation Technique for the Development of Novel Infrared Light Emitting Arrays

Nemchinov, Alexander 23 July 2012 (has links)
No description available.
402

Femtosecond Time-Resolved Spectroscopic Investigation of the Opto-Electrochemical Properties of Novel Nanomaterials

Lou, Yongbing January 2007 (has links)
No description available.
403

Characterization and Analysis of Shape Memory Polymer Composites With Cellulose Nanocrystal Fillers

Berkowitz, Kyle Matthew 11 June 2014 (has links)
No description available.
404

A Novel Approach for the Fabrication of All-Inorganic Nanocrystal Solids: Semiconductor Matrix Encapsulated Nanocrystal Arrays

Moroz, Pavel 23 July 2015 (has links)
No description available.
405

CELLULOSE NANOCRYSTALS AND RELATED POLYMER NANOCOMPOSITES

Cudjoe, Elvis 06 September 2017 (has links)
No description available.
406

Self-Organization and Controlled Spatial Distribution of Cellulosic Nanofillers in Polymer Thin Films

Grolman, Danielle, Grolman January 2017 (has links)
No description available.
407

Polarization Studies of Coupled Quantum Dots

Ramanathan, Swati January 2007 (has links)
No description available.
408

Reducing Threshold of Biexciton Formation in Semiconductor Nanocrystals through Their Self-Assembly into Nano-Antennae

Emara, Mahmoud M. 18 July 2008 (has links)
No description available.
409

Down-shifting of Light by Ion Implanted Samples for Photovoltaic Applications

Savidge, Rachel M. 10 1900 (has links)
<p>Single junction silicon photovoltaic cells (SJSPVCs) are unable to transform all the energy in the solar spectrum into electricity, due to the broad nature of the solar spectrum and the limits imposed by a single bandgap. Furthermore, high surface recombination velocity reduces the SJSPVC external quantum efficiency response, particularly to ultraviolet photons. It is the goal of spectral engineering to optimize the light that is incident on the cell, by down-shifting high energy photons to lower energies, for example, to improve the performance of photovoltaic cells.</p> <p>This thesis represents a study into the luminescence of ion implanted films, involving silicon nanocrystals (Si-NCs) and rare-earth ions in fused silica or silicon nitride. Quantum efficiency measurements taken with an integrating sphere were used to characterize some of the samples. Other photoluminescence (PL) characterization work was carried out with a single-wavelength laser and a collection lens normal to the sample. Variable angle spectroscopic ellipsometry (VASE) was used to estimate the optical constants of the implanted films. In secondary work, Rutherford backscattering spectrometry, time-dependent PL, infrared-PL measurements, and electrical conductivity measurements were used to characterize select samples.</p> <p>It was found that the conversion efficiency of Si-NCs in fused silica was about 1% – too low to be useful according to modeled results. However, considerable variation in the peak wavelength of the Si-NC PL was obtained, depending on the peak concentration of implanted silicon. Si-NC-type PL was also produced by low-energy implantation of oxygen into a Czochralski silicon wafer.</p> <p>Oxygen was also implanted into films of cerium-doped high-purity silicon nitride, and it was shown that the photoluminescence from these films is largely dependent on the level of oxygen doping. The internal conversion efficiency of a cerium-doped fused silica sample was found to approach 20%, which indicates that this is a promising avenue for future research.</p> <p>Finally, energy transfer was demonstrated between Si-NCs and erbium ions. The lifetime of the erbium PL appears to increase with increasing implanted silicon fluence.</p> / Master of Applied Science (MASc)
410

SPECTRAL ENGINEERING VIA SILICON NANOCRYSTALS GROWN BY ECR-PECVD FOR PHOTOVOLTAIC APPLICATIONS

Sacks, Justin 10 1900 (has links)
<p>The aim of third-generation photovoltaics (PV) is ultimately to achieve low-cost, high-efficiency devices. This work focused on a third-generation PV concept known as down-shifting, which is the conversion of high-energy photons into low-energy photons which are more useful for a typical solar cell. Silicon nanocrystals (Si-NCs) fabricated using electron-cyclotron resonance plasma-enhanced chemical vapour deposition (ECR-PECVD) were studied as a down-shifting material for single-junction silicon cells. A calibration was done to determine optimal deposition parameters for Si-NC formation. An experiment was then done to determine the effect of film thickness on emission, optical properties, and photoluminescence quantum efficiencies.</p> <p>Photoluminescence (PL) peaks varied depending on the stoichiometry of the films, ranging from approximately 790 nm to 850 nm. Variable-angle spectroscopic ellipsometry was used to determine the optical constants of the Si-NC films. The extinction coefficients indicated strong absorption below 500 nm, ideal for a down-shifting material. Transmission Electron Microscopy (TEM) was used to determine the size, density, and distribution of Si-NCs in two of the films. Si-NCs were seen to have an average diameter of approximately 4 nm, with larger nanocrystals more common near the surface of the film. A density of approximately 10<sup>5</sup> nanocrystals per cubic micron was approximated from one of the TEM samples.</p> <p>The design and implementation of a PL quantum efficiency measurement system was achieved, using an integrating sphere to measure the absolute efficiency of Si-NC emission. Internal quantum efficiencies (IQE) as high as 1.84% and external quantum efficiencies (EQE) of up to 0.19% were measured. The EQE was found to increase with thicker films due to more intense photoluminescence; however the IQE remained relatively independent of film thickness.</p> / Master of Applied Science (MASc)

Page generated in 0.0467 seconds