• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 357
  • 59
  • 57
  • 57
  • 8
  • 8
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 638
  • 113
  • 100
  • 97
  • 86
  • 75
  • 65
  • 61
  • 60
  • 58
  • 55
  • 51
  • 50
  • 47
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Sustainable Polymer Reaction Engineering: Towards Fully Renewable Pressure-Sensitive Adhesives

Gabriel, Vida A. 18 August 2022 (has links)
This thesis has as its principal goal the development of sustainable pressure-sensitive adhesives (PSAs). To that end, we examined polymer reaction engineering practices and polymer formulations through the lens of the 12 Principles of Green Chemistry. To begin with, we employed emulsion polymerization as our polymer synthesis method because of its use of water instead of hazardous solvents. We also replaced various petroleum-based components with bio-based alternatives (e.g., starch, cellulose nanocrystals), thereby reducing synthesis hazards, increasing product safety and increasing the amount of sustainably sourced raw materials in the PSA. However, changing the synthetic method as well as key components in the formulation presented significant challenges to maintaining PSA performance. This thesis illustrates the challenging path taken towards developing a fully renewable PSA. PSAs should display a specific balance of adhesion and cohesion. Typically, petroleum-based additives (which are often hazardous/toxic) such as tackifiers, cross-linkers, chain transfer agents and rheology modifiers are added to tailor latex properties to fit the intended application. However, because of their inherently opposing effects, an additive used to increase adhesion will weaken the cohesive forces of the polymer, and vice versa. Cellulose nanocrystals (CNCs) are sustainable nanomaterials that have been shown to be effective to resolve the adhesion/cohesion conundrum. In the first part of this project, we developed a new technique to increase CNC loading in emulsion-based PSA formulations beyond the 1-2% limits previously encountered due to high latex viscosity, colloidal instability, and poor film properties. The higher CNC loadings were shown to continuously improve shear strength but resulted in eventual decreases to tack and peel strength. In the second part of this project, we replaced the sulfated CNCs with carboxylated CNCs (cCNCs), which are produced by a process using a “greener” catalyst (i.e., hydrogen peroxide instead of sulfuric acid). The cCNCs’ carboxylate surface groups interacted strongly with the polymer matrix, ultimately leading to catastrophic coagulation. The interactions between cCNCs and other standard latex components were studied and through the creative manipulation of the emulsion polymerization process, a reproducible method to incorporate the cCNCs in a seeded semi-batch reaction yielded stable, high-quality latexes. In the third part of this project, the effect of the cCNCs on the adhesive properties of the nanocomposite latex films was studied and compared to the effects of the sulfated CNCs. AFM imaging revealed that cCNCs interact with latex particles and each other; thus, omitting ultrasonication at the preparation stage was shown to preserve these interactions and lead to greater property enhancements. In the fourth part of this project, starch nanoparticles (SNPs) were used to displace some of the petroleum-based monomer in the production of core-shell (SNP cores, acrylic shell) latexes. SNPs are renewably sourced, inexpensive, and biodegradable. The challenge of locating the SNPs into the particle cores was overcome by crosslinking the SNPs using a food grade cross-linker (sodium trimetaphosphate) and functionalizing them using a sugar-based monomer (EcoMer™). To tune the PSA properties to rival a range of commercial tapes, a method to incorporate CNCs to the SNP-latexes in situ was developed. In addition, because monomers such as 2-octyl acrylate (2OA), styrene, and acrylic acid can be bio-sourced, they were selected as the acrylic shell monomers to encapsulate the SNPs in the nanocomposite latexes. Due to supply chain challenges, n-octyl acrylate was used as a model monomer for 2OA to produce latexes with ~80% bio-content that rivaled commercial Post-It™ notes, masking tapes, and duct tapes. After addressing the sustainability of the polymerization method and polymer components, we posed the question: what are the effects of using renewably sourced and bio-sourced materials on the end-of-life of the PSAs? Because the infrastructure for biodegradation studies at the lab scale via composting does not exist in Canada (to our knowledge), we designed an in-house aerobic composting set-up consisting of a series of bioreactors and sensors capable of measuring the aerobic biodegradability of our polymers in a simulated composting environment. Although not fully tested, the composting setup was designed, and its construction was begun. Steps to complete the construction and validate its operation are detailed. The path towards sustainability is often long and complex. In this four-year study, the re-design of an adhesive synthesis process using a more sustainable approach, emulsion polymerization, along with an 80% bio-sourced formulation required significant corrective measures. Overcoming the technical challenges required mustering all the polymer reaction engineering tools at our disposal. Despite the time and effort required, achieving a more sustainable process is indeed within our grasp.
392

Colloidal Synthesis of I-III-VI Semiconductor Nanocrystals and Study of Their Optical Properties

Bora, Ankita 29 August 2023 (has links)
Semiconductor nanocrystals (NCs) have emerged as promising fluorophores in a plethora of applications including lighting and display technologies. Cd/Pb-chalcogenide-based NCs are by far the most studied classes of semiconductor NCs due to their exemplary luminescence properties. However, their toxicity poses a limit to their widespread application and use in biological systems, nanomedicine, as biomarkers, etc. Therefore, the search for alternatives that can replace Cd/Pb-chalcogenide-based NCs as fluorophores in various applications is a topic of rigorous research. This PhD thesis delves into the development of synthetic strategies for one such class of materials that can potentially replace Cd/Pb-chalcogenide-based NCs in various applications. I-III-VI semiconductor NCs, containing earth abundant metals which are comparatively less toxic than Cd and Pb have emerged as a suitable alternative. In this group, Cu-In-S/Se (CIS/Se) based NCs have gained significant interest due to their nontoxic nature and interesting optical properties. The principal aim of this thesis is to develop synthetic strategies to obtain morphologically vivid CIS/Se NCs and study their optical properties. Due to the multiple reactive species present in ternary /quaternary NCs, direct method of synthesis wherein all precursors are reacted at the same time exhibit problems of inhomogeneous size, shape, and compositions, along with binary byproducts formed in addition to the desired ternary/quaternary NCs. In view of this limitation of direct method of synthesis, a cation exchange (CE) pathway of synthesis has been developed. In this approach, a binary NC is first synthesized using a conventional direct method, which then serves as a host lattice for the incoming third or fourth cation thus leading to the synthesis of ternary or quaternary multicomponent NCs. Employing this route enables the preservation of the morphology and crystal structure of the host NC after the exchange process, leading to better control over size, shape, and composition of the desired NCs. In this thesis, 0D spherical Cu-Zn-In-Se (CZISe) NCs were synthesized using a CE approach starting with binary Cu2-xSe NCs and thereafter the composition dependence of their optical properties was studied. The synthesized quaternary CZISe NCs exhibited intensive tuneable photoluminescence (PL) in the near infrared (NIR) range and narrow PL band widths in comparison to the band widths generally observed in this class of materials. Long-chain organic ligands on the surface of colloidal NCs limit carrier mobility, and hence surface modification of the NCs becomes necessary for applications where carrier mobility is an important aspect, e.g., in solar cell fabrication. Thus, surface modification of the synthesized CZISe NCs was also explored to make the NCs compatible for prospective applications of solar energy harvesting. In addition to 0D NCs, two-dimensional (2D) NCs have gained significant interest due to their unique anisotropic optical properties. For example, extremely narrow PL band widths were exhibited for CdSe nanoplatelets (NPLs) due to the strong confinement of the NPLs in the thickness direction. These 2D NCs have also been utilized in a wide array of applications, particularly in thin film photovoltaics and optoelectronics, and therefore investigation of 2D morphologies of I-III-VI based NCs is also of utmost interest. In this thesis, 2D Cu-Zn-In-S (CZIS) NPLs were synthesized which exhibited rectangular morphology and were unstacked due to the synthetic strategy employed. CIS NPLs were synthesized using a seed-mediated approach and a subsequent CE with Zn enabled the synthesis of CZIS NPLs. Subsequently, a ZnS shell growth leading to the formation of CZIS/ZnS NPLs resulted in the enhancement of PL intensity. As compared to 2D CIS NCs the Se counterpart is less studied and very few reports of 2D CISe-based NCs are present in literature and the reported 2D CISe based NCs have not exhibited any PL. Due to the narrower band gap of CISe than CIS, it is possible to push the PL into the NIR range which unlocks new applications and therefore developing synthetic strategies for 2D CISe based NCs which exhibit PL in the NIR range was also explored in this synthesis. CISe NPLs were synthesized using a similar seed-mediated approach used for CIS NPLs, but the difference in reactivities of S and Se required significant optimization of the synthesis parameters. A subsequent CE with Zn resulted in the synthesis of CZISe NPLs with inherent PL in the NIR range with very narrow PL band widths.
393

Atomic-scale Modeling of Transition-metal Doping of Semiconductor Nanocrystals

Singh, Tejinder 01 February 2011 (has links)
Doping in bulk semiconductors (e.g., n- or p- type doping in silicon) allows for precise control of their properties and forms the basis for the development of electronic and photovoltaic devices. Recently, there have been reports on the successful synthesis of doped semiconductor nanocrystals (or quantum dots) for potential applications in solar cells and spintronics. For example, nanocrystals of ZnSe (with zinc-blende lattice structure) and CdSe and ZnO (with wurtzite lattice structure) have been doped successfully with transition-metal (TM) elements (Mn, Co, or Ni). Despite the recent progress, however, the underlying mechanisms of doping in colloidal nanocrystals are not well understood. This thesis reports a comprehensive theoretical analysis toward a fundamental kinetic and thermodynamic understanding of doping in ZnO, CdSe, and ZnSe quantum dots based on first-principles density-functional theory (DFT) calculations. The theoretical predictions of this thesis are consistent with experimental measurements and provide fundamental interpretations for the experimental observations. The mechanisms of doping of colloidal ZnO nanocrystals with the TM elements Mn, Co, and Ni is investigated. The dopant atoms are found to have high binding energies for adsorption onto the Zn-vacancy site of the (0001) basal surface and the O-vacancy site of the (0001) basal surface of ZnO nanocrystals; therefore, these surface vacancies provide viable sites for substitutional doping, which is consistent with experimental measurements. However, the doping efficiencies are affected by the strong tendencies of the TM dopants to segregate at the nanocrystal surface facets, as indicated by the corresponding computed dopant surface segregation energy profiles. Furthermore, using the Mn doping of CdSe as a case study, the effect of nanocrystal size on doping efficiency is explored. It is shown that Mn adsorption onto small clusters of CdSe is characterized by high binding energies, which, in conjunction with the Mn surface segregation characteristics on CdSe nanocrystals, explains experimental reports of high doping efficiency for small-size CdSe clusters. In addition, this thesis presents a systematic analysis of TM doping in ZnSe nanocrystals. The analysis focuses on the adsorption and surface segregation of Mn dopants on ZnSe nanocrystal surface facets, as well as dopant-induced nanocrystal morphological transitions, and leads to a fundamental understanding of the underlying mechanisms of dopant incorporation into growing nanocrystals. Both surface kinetics (dopant adsorption onto the nanocrystal surface facets) and thermodynamics (dopant surface segregation) are found to have a significant effect on the doping efficiencies in ZnSe nanocrystals. The analysis also elucidates the important role in determining the doping efficiency of ZnSe nanocrystals played by the chemical potentials of the growth precursor species, which determine the surface structure and morphology of the nanocrystals.
394

Sb₂S₃ nanostructured composite materials for photovoltaics / 光電変換用Sb₂S₃ナノ構造複合材料

Zhou, Boyang 24 November 2022 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第24302号 / エネ博第453号 / 新制||エネ||85(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)教授 佐川 尚, 教授 萩原 理加, 教授 野平 俊之 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DGAM
395

Preparation and stability of organic nanocrystals. Experimental and molecular simulation studies.

Khan, Shahzeb January 2012 (has links)
A major challenge affecting the likelihood of a new drug reaching the market is poor oral bioavailability derived from low aqueous solubility. Nanocrystals are rapidly becoming a platform technology to address poor solubility issues, although several challenges including stabilisation and control of particle size distribution for nanosuspensions still need to be addressed. The aim of this study was to revisit the simplest approach of re-precipitation and to identify the critical parameters, including the effect of different stabilisers as well as process conditions. We utilised a combined approach of both experiments and molecular modelling and simulation, not only to determine the optimum parameters but also to gain mechanistic insight. The experimental studies utilised three rather distinct, relatively insoluble drugs, the hypoglycaemic glibenclamide, the anti-inflammatory ibuprofen, and the anti-malarial artemisinin. The choice of crystal growth inhibitors/stabilizers was found to be critical and specific for each drug. The effect of the process variables, temperature, stirring rate, and the solute solution infusion rate into the anti-solvent, was rationalized in terms of how these factors influence the local supersaturation attained at the earliest stages of precipitation. Coarse grained simulation of antisolvent crystallisation confirmed the accepted two step mechanism of nucleation at high supersaturation which involves aggregation of solute particles followed by nucleation. Recovery of nanocrystals from nanosuspensions is also a technical challenge. A novel approach involving the use of carrier particles to recovery the nanocrystals was developed and shown to be able to recover more than 90% of the drug nanocrystals. The phase stability of nanocrystals along with bulk crystals for the model compound glycine was explored using molecular dynamics simulation. The simulations were consistent with experimental data, a highlight being the ¿ phase transforming to the ¿ phase at temperature >400K and 20kbar respectively, as expected. Nanocrystals of ¿, ¿ and ¿ glycine, however did not show any phase transformation at high temperature. In summary the study demonstrates that standard crystallization technology is effective in producing nanocrystals with the primary challenge being physico-chemical (rather than mechanical), involving the identification of molecule-specific crystal growth inhibitors and/or stabilizers. The developed nanocrystal recovery method should enable the production of nanocrystals-based solid dosage forms. The molecular simulation studies reveal that crystal-crystal phase transformations can be predicted for hydrogen-bonded systems. / HEC Pakistan and University of Malakand KP (Khyber Pakhtunkhwa)
396

Interaction of Ion Beam with Si-based Nanostructures

Xu, Xiaomo 26 February 2024 (has links)
Silicon has been the fundamental material for most semiconductor devices. As Si devices continue to scale down, there is a growing need to gain a better understanding of the characteristics of Si-based nanostructures and to develop novel fabrication methods for devices with extremely small dimensions. Ion beam implantation as a ubiquitous industrial method is a promising candidate for introducing dopants into semiconductor devices. Although the interactions between ion beams and Si nanostructures have been studied for several decades, many questions still remain unanswered, especially when the size of the target structure and the interaction volume of the incident ion beam have similar extents. Recent studies have demonstrated different potential use cases of ion beam interactions with Si nanostructures, such as Si nanocrystals (SiNCs). One of them is to use SiNCs embedded in a SiO2 layer as the Coulomb blockade for a single electron transistor (SET) device. In this work, we demonstrate the ion beam synthesis of SiNCs, as well as other ion beam interactions with Si-based nanostructures. To build the basic structure of a room-temperature SET, both conventional broad-beam implantation and a focused Ne+ beam from a helium ion microscope (HIM) were used for ion beam mixing. Subsequent annealing using rapid thermal processing (RTP) triggered phase separation and Ostwald ripening, where small nucleated Si clusters merge to form larger ones with the lowest surface free energy. Various ion implantation parameters were tested, along with different conditions during the RTP treatment. The SiNC structures were examined with energy-filtered transmission electron microscopy (EFTEM) to determine the optimum fabrication conditions in terms of ion beam fluence and thermal budget for the RTP treatment. Due to their small size and the resulting quantum confinement, SiNCs also exhibited optical activity, which was confirmed by photoluminescence spectroscopy on both broad-beam irradiated blank wafers and vertical hybrid nanopillar structures with embedded SiNCs. By scanning a laser probe over the sample and integrating the signal close to the emission peak, 1 μm-wide micropads with embedded SiNCs could be spatially resolved and imaged, demonstrating a new method of patterning and visualizing the SiNC emission pattern. To integrate SiNCs into vertical nanopillars for the fabrication of the SET, a fundamental study was conducted on the interaction between ions and vertical Si nanopillars. It was discovered that irradiating vertical Si nanopillars with ion fluence up to 2×1016 cm−2 immediately caused amorphization and plastic deformation due to the ion hammering effect and the viscous flow of Si during the irradiation. However, amorphization could be avoided by heating the substrate to above 350 °C, which promotes dynamic annealing. Several factors, including substrate temperature, ion flux, and nanostructure geometry, determine whether ion irradiation causes amorphization. Furthermore, at sufficiently high substrate temperatures, increasing ion fluence gradually reduced the diameter of the nanopillars due to forward sputtering from ions on the sidewalls. With a fluence up to 8×1016 cm−2 from broad-beam Si+, the diameter of Si nanopillars could be reduced by 50% to approximately 11 nm. Similar experiments were conducted on vertical nano-fin structures, which were thinned down to about 16 nm with Ne+ irradiation from the HIM. However, electrical measurements with scanning spreading resistance microscopy (SSRM) showed that the spreading resistance of the fins increased, even at a lower fluence of 2×1016 cm−2, which was too high for subsequent device integration. Nevertheless, these findings contributed to achieving the CMOS-compatible manufacturability of room-temperature SET devices and furthered our understanding of the fundamentals of ion interactions with Si nanostructures.
397

Cryogenic Near-field Nanoscopy at Terahertz Frequency

Jing, Ran January 2023 (has links)
This dissertation reports on data acquisition method and the application of world’s first cryogenic apertureless near-field microscope designed for terahertz frequencies. The dissertation briefly summarizes the commonly used data acquisition methods and the existing challenges in applying near-field technology using broadband terahertz sources. We devised, implemented, and validated a novel measurement technique to resolve the challenges. The novel method improves the traditional method by providing the information of the carrier-envelop-phase of the terahertz pulse. The physical properties of WTe₂ microcrystals depend sensitively on the layer number. By applying both the traditional and the novel techniques, we systematically explored the layer-dependent electromagnetic response of mono-layer and few-layer tungsten ditelluride (WTe₂ microcrystals. On tri-layer WTe₂, we discovered the plasmonic response and imaged the real-space pattern of the terahertz plasmon using the novel measurement technique. On bi-layer WTe₂, our measurements support that the band alignment is semi-metallic instead of semi-conducting. Near-field technology at terahertz frequency is sensitive to the Drude behavior of condensed matters. We imaged the electromagnetic response of the transition of cadmium osmate (Cd₂Os₂O₇) crystals from a high temperature metal to a low temperature magnetic insulator. The result is consistent with the temperature dependence in the direct-current conductivity. In the end, the dissertation discusses the theory and simulation of imaging hydrodynamic flow of materials with viscous electron systems via nano-photocurrent technique. In anisotropic material, nano-photocurrent measures the geometrical properties of the Shockley-Ramo auxiliary field or flux. As a result, the nano-photocurrent is a good candidate to detect the boundary layer and vortex flow pattern of a viscous electron system.
398

Fabrication of Binary Quantum Solids From Colloidal Semiconductor Quantum Dots

Schmall, Nicholas Edward 29 July 2009 (has links)
No description available.
399

Synthesis of Nanoscale Semiconductor Heterostructures for Photovoltaic Applications

Nemitz, Ian R. 08 July 2010 (has links)
No description available.
400

Using Colloidal Nanocrystal Matrix Encapsulation Technique for the Development of Novel Infrared Light Emitting Arrays

Nemchinov, Alexander 23 July 2012 (has links)
No description available.

Page generated in 0.057 seconds