• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 47
  • 47
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The electronic structure of the Tyr-Cys· free radical in galactose oxidase determined by EPR spectroscopy

Lee, Yuk Ki 09 1900 (has links) (PDF)
M.S. / Biochemistry / The EPR spectrum of the Tyr-Cys· free radical in oxidized apoGAOX has been investigated, using a combination of approaches. Power saturation analysis has been used to resolve two unique spectra through Evolving Factor Analysis (EFA) global fitting, indicating the presence of two distinct free radical species in the sample. The component that dominates at low microwave power arises from the Tyr-Cys· side chain, while the high power component has not yet been assigned. The experimental results show that the EPR spectrum collected at low power includes approximately 7% of the high power component. EPR spectra have been collected for ten different isotope derivatives of GAOX, including ²H-labeled, ¹³C-labeled, 17[superscript]O-labeled, and ³³S-labeled forms. XSophe simulation of the EPR spectra has been performed for the isotopically labeled samples in order to determine the spectroscopic parameters - g-values, hyperfine coupling constants, and linewidths. The g-values and the methylene proton hyperfine coupling constants obtained for the isotopically labeled samples are consistent with the literature values. The magnitude of the hyperfine coupling constants associated with each of the nuclei confirms that significant electron spin density is found on the methylene protons, the alternating carbon atoms within the aromatic π system and the 2p[subscript]z orbital of both sulfur and oxygen. Moreover, the rotation angle of the methylene protons to the phenoxyl ring around the C1-C7 bond has been evaluated based on the experimentally defined hyperfine coupling constants of the two methylene protons.
32

Electron spin resonance study of conformational effects in free radicals derived from aliphatic alcohols and ethers

Briggs, Alexander Gibson 01 November 2010 (has links)
Variable temperature ESR studies of radicals generated photolytically from simple aliphatic alcohols and ethers in cyclopropane solution reveal complex linewidth effects. Isotropic modulation of the proton hyperfine splittings (hfs) through restricted rotation about C-0 and C-C single bonds is observable in the region 230>T>150K. Such effects can be distinguished from anisotropic viscosity-dependent line broadening. In spectra from alcohol radicals resolved 2nd order structure causes no ambiguity in the interpretation. Restricted rotation about Ca-0H modulates aaH and aBH out-of-phase with a0H in the series RCHOH [R= CH3, C2H5, C2H5CH2, (CH3)2CHCH2, (CH3)3CCH2]. A general model for the process is discussed. In cases three and four restricted Co-C rotation allows the diastereotopic inequivalence of the 6-protons to be manifested as a broadening of MB = 0 components. Preferred conformations consistent with all the foregoing modulation effects and with observed HB and HY splittings are presented. The analysis is supported by results for radicals RCHOR' from related ethers and by spectral simulation. The spectrum of the 1-hydroxycyclohexyl radical demonstrates previously unobserved fine structure and a low-temperature linewidth effect tentatively attributed to radical site inversion. A second series of alcohol-derived radicals R1R2R3CCHOH with an increasingly bulky Ca substituent has been studied. The Ha hfs provide evidence of a steric flattening not hitherto observed. This effect correlates well with literature values of steric parameters for the R1R2R3C substituent. In the case R1,R2 = CH3, R3 = C2H5 an observed specific y-H interaction is assigned to a locked conformation of the crowded system. A series of highly alkylated cyclic ethers has been examined. The dramatic temperature-dependent changes in the spectrum of the 5,5-dimethyl-l,3-dioxan-2-yl radical are attributed to restricted ring flipping. A fast exchange limit spectrum has been obtained for the first time in such systems, allowing evaluation of thermodynamic parameters. the 2,4,8,10-tetraoxyspiro[5,5]undecan-3-yl radical exhibits similar behaviour. The 2,2,5,5-tetramethyl and 5,5-diethyl-2,2-dimethyl-l,3--dioxan-4-yl radicals have fixed conformations which give rise to enhanced values of ayH in agreement with theoretical calculations. In the latter case a splitting of 4.27 G is assigned to a single y-methylene proton in behaviour analogous to R1R2R3CCHOH.
33

Magnetic resonance studies of organometallic cations and clusters.

Li, Lijuan. McGlinchey, M.J. Eaton, D.R. Unknown Date (has links)
Thesis (Ph.D.)--McMaster University (Canada), 1992. / Source: Dissertation Abstracts International, Volume: 54-02, Section: B, page: 0826.
34

Data acquisition and reconstruction techniques for improved electron paramagnetic resonance (EPR) imaging

Ahmad, Rizwan, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 118-124).
35

EPR and fluorescence studies on erythrocyte membrane skeletal proteins : cdb3 and ankyrin

Zhou, Zheng, January 2006 (has links)
Thesis (Ph. D. in Molecular Physiology and Biophysics)--Vanderbilt University, May 2006. / Title from title screen. Includes bibliographical references.
36

EPR study of ligand-receptor interactions measuring ligand induced changes in dynamics and structure of the estrogen receptor ligand binding domain : a dissertation /

Gullà, Stefano V. January 1900 (has links)
Thesis (Ph. D.)--Northeastern University, 2008. / Title from title page (viewed Aug. 5, 2009). Graduate School of Arts and Sciences, Dept. of Chemistry and Chemical Biology. Includes bibliographical references.
37

EPR studies of electron transfer in cadmium selenide sensitised titania

Beukes Stewart, Eva-Panduleni January 2016 (has links)
Research into renewable energy sources is crucially increasing to counteract the ever more concerning impact of non-renewable sources. Theoretically, Quantum Dot Solar Cells (QDSCs) can achieve much greater efficiencies than current, commercial solar cells, but its expansion is still in its very early stages of scientific study and development. In this project TiO2, one of the most efficient and cost-effective photocatalysts, is coupled with Cadmium Selenide (CdSe) Quantum Dots (QD) in a study of interfacial charge transfers. Thus far, in other studies, CdSe QDs have shown some of the most promising results of QDSCs. EPR spectroscopy has been used here to study charge transfer processes in CdSe quantum dot (QD) sensitised titania. Visible light excitation of QDs directly adsorbed onto titania surfaces causes electron transfer to the titania, producing characteristic EPR signals of trapped electrons in the titania. Under ultraviolet excitation the trapped electron signals seen in titania alone are suppressed in the presence of directly adsorbed quantum dots, as is the formation of superoxide in the presence of oxygen. These observations suggest that reverse electron transfer from the titania to the QDs can also occur. No visible light excited electron transfer occurs in the case of QDs attached to the titania surface via bi-linker molecules, but under ultraviolet excitation a similar suppression of electron trapping in the titania phase is seen. These results show that the nature of the interface between the QDs and the titania phase is crucially important in the electron transfer processes in both directions. The study also looks at the pitfalls of synthesis techniques used for making the CdSe QDs as well as the method of attaching it to the TiO2. Ionic deposition, which generally resulted in the best photocurrents in other studies, was discovered early on this project produced very impure samples. Direct Adsorption produces low titania surface coverage, which can potentially be improved. Whereas the lack of discussion in literature of clear purification methods in synthesis techniques for attaching QDs via a bi-linker molecule, through ligand exchange, causes a significant drawback in the study of such systems.
38

Aplicação da espectroscopia de ressonância paramagnética eletrônica e técnicas complementares no estudo dos compósitos restauradores fotopolimerizáveis

Fontes, Adriana da Silva 25 September 2009 (has links)
Os compósitos fotopolimerizáveis ainda requerem muitos estudos, pois, por não se polimerizarem completamente, apresentam alguns inconvenientes que podem omprometer a longevidade da restauração dentária. Diante disso, torna-se cada vez maior o interesse em realizarem-se novas investigações com metodologias que possam contribuir para um melhor entendimento das propriedades físico-químicas deste produto. Nesse contexto, o presente trabalho visa colaborar mostrando que a espectroscopia de Ressonância Paramagnética Eletrônica (RPE) combinada com as análises convencionais, pode trazer informações importantes sobre o processo de polimerização desse material restaurador estético. Inicialmente, oito tipos de compósitos comerciais, do tipo fotopolimerizável foram utilizados nesta investigação: FILTEKTM Z350 (3M ESPE), FILTEKTM Z250 (3M ESPE), Z100 (3M ESPE), Opallis (FGM), Charisma (Heraues Kulzer), Master Fill (Biodinâmica), Suprafill (SSWhite) e Fillmagic (Vigodent). Foram utilizadas para a fotopolimerização das amostras uma fonte halógena (Kehr XR Light) e uma fonte LED -Ultra Blue (Dabi Atlante). Devido à natureza do radical gerado durante o processo de fotopolimerização, a espectroscopia de RPE foi empregada para sondar o comportamento dessa espécie paramagnética sob diversas condições. Em adição, técnicas experimentais de Espectroscopia de Absorção na região do Infravermelho por Transformada de Fourier, resistência mecânica (flexural e compressão), microdureza superficial, contração volumétrica, profundidade de polimerização, Microscopia Eletrônica de Varredura, Sistema de Energia Dispersiva,Sorção e Solubilidade, Testes de Raspagens e Análise da Translucidez foram realizadas para a obtenção de informações adicionais. A combinação desses métodos foi utilizada com sucesso facilitando a compreensão do comportamento do material em estudo. Através da análise dos dados obtidos por RPE foi possível comprovar que a polimerização continua ocorrendo mesmo após o encerramento da fotopolimerização; que o espectro de RPE tem a contribuição de duas espécies de radicais; que a dose de irradiação deve ser diferenciada para as resinas, sendo dependente da composição química, da cor do compósito e do grau de translucidez, entre outros fatores, tendo esses, influencia significativa sobre o desempenho mecânico do material; A resina re-irradiada, após 24h da irradiação, gerou novos radicais, indicando que parte dos agentes iniciadores da polimerização ainda não haviam reagido; a resina armazenada em água a 370C apresenta uma polimerização mais rápida. Os resultados das técnicas utilizadas se complementam e indicam que a resina que gerou maior número de radicais livres, identificada por RPE, apresenta melhor qualidade. / The photopolymerizated composites still requesty many studies, because, for no polymerized themselves completely, they show some inconveniences that can commit the longevity of the dental restoration. For this, it is every time larger the interest in new investigations with methodologies that can contribute to a better understanding of the physiochemical properties of this product. In this context, the present work intends to collaborate showing that the spectroscopy of Electron Paramagnetic Resonance (EPR) combined with the conventional analyses, can bring important information on the polymerization process of this aesthetic restoring material. Initially, eight types of commercial composites, of the type photocurable were used in this investigation: FILTEKTM Z350 (3M ESPE), FILTEKTM Z250 (3M ESPE), Z100 (3M ESPE), Opallis (FGM), Charisma (Heraues Kulzer), Master Fill (Biodinâmica), Suprafill (SSWhite) and Fillmagic (Vigodent). They were used for the photo activation of the samples a halogenic source (Kehr XR Light) and a source LED Ultra Blue (Dabi Atlante). Due to the nature of the radical generated during the photopolymerization process, EPR spectroscopy was used to probe the behavior of that paramagnetic species under several conditions. In addition, Fourier Transform Infrared spectroscopy (FTIR), and experimental techniques of mechanical resistance (flexural and compression), microhardness, volumetric contraction, polymerization depth, Scanning Electron Microscopy, Energy Dispersive System (EDS), sorption and solubility, tests of scratching and measure of the translucency degree were accomplished for the obtaining of additional information. The combination of those methods was used with success facilitating the understanding of the material behavior under study. Through the analysis of the data obtained by EPR was possible to verify that the polymerization continues doing happen after the conclusion of the photopolymerization; that the spectrum of EPR show the contribution of two species of radicals; that the irradiation dose should be differentiated for the resins, being dependent of the chemical composition, of the composite color and of the translucency degree, among other factors, these have significant influences on the mechanical acting of the material; The re-irradiated resin, after 24h of irradiation generated new radicals, indicating that a fraction of the initiators agents of the polymerization had not reacted still; the resin stored in water at 370C showed a faster polymerization. The results of the used techniques are complemental and they indicate the resin that generated larger number of free radicals, identified for EPR, show better quality.
39

Aplicação da espectroscopia de ressonância paramagnética eletrônica e técnicas complementares no estudo dos compósitos restauradores fotopolimerizáveis

Fontes, Adriana da Silva 25 September 2009 (has links)
Os compósitos fotopolimerizáveis ainda requerem muitos estudos, pois, por não se polimerizarem completamente, apresentam alguns inconvenientes que podem omprometer a longevidade da restauração dentária. Diante disso, torna-se cada vez maior o interesse em realizarem-se novas investigações com metodologias que possam contribuir para um melhor entendimento das propriedades físico-químicas deste produto. Nesse contexto, o presente trabalho visa colaborar mostrando que a espectroscopia de Ressonância Paramagnética Eletrônica (RPE) combinada com as análises convencionais, pode trazer informações importantes sobre o processo de polimerização desse material restaurador estético. Inicialmente, oito tipos de compósitos comerciais, do tipo fotopolimerizável foram utilizados nesta investigação: FILTEKTM Z350 (3M ESPE), FILTEKTM Z250 (3M ESPE), Z100 (3M ESPE), Opallis (FGM), Charisma (Heraues Kulzer), Master Fill (Biodinâmica), Suprafill (SSWhite) e Fillmagic (Vigodent). Foram utilizadas para a fotopolimerização das amostras uma fonte halógena (Kehr XR Light) e uma fonte LED -Ultra Blue (Dabi Atlante). Devido à natureza do radical gerado durante o processo de fotopolimerização, a espectroscopia de RPE foi empregada para sondar o comportamento dessa espécie paramagnética sob diversas condições. Em adição, técnicas experimentais de Espectroscopia de Absorção na região do Infravermelho por Transformada de Fourier, resistência mecânica (flexural e compressão), microdureza superficial, contração volumétrica, profundidade de polimerização, Microscopia Eletrônica de Varredura, Sistema de Energia Dispersiva,Sorção e Solubilidade, Testes de Raspagens e Análise da Translucidez foram realizadas para a obtenção de informações adicionais. A combinação desses métodos foi utilizada com sucesso facilitando a compreensão do comportamento do material em estudo. Através da análise dos dados obtidos por RPE foi possível comprovar que a polimerização continua ocorrendo mesmo após o encerramento da fotopolimerização; que o espectro de RPE tem a contribuição de duas espécies de radicais; que a dose de irradiação deve ser diferenciada para as resinas, sendo dependente da composição química, da cor do compósito e do grau de translucidez, entre outros fatores, tendo esses, influencia significativa sobre o desempenho mecânico do material; A resina re-irradiada, após 24h da irradiação, gerou novos radicais, indicando que parte dos agentes iniciadores da polimerização ainda não haviam reagido; a resina armazenada em água a 370C apresenta uma polimerização mais rápida. Os resultados das técnicas utilizadas se complementam e indicam que a resina que gerou maior número de radicais livres, identificada por RPE, apresenta melhor qualidade. / The photopolymerizated composites still requesty many studies, because, for no polymerized themselves completely, they show some inconveniences that can commit the longevity of the dental restoration. For this, it is every time larger the interest in new investigations with methodologies that can contribute to a better understanding of the physiochemical properties of this product. In this context, the present work intends to collaborate showing that the spectroscopy of Electron Paramagnetic Resonance (EPR) combined with the conventional analyses, can bring important information on the polymerization process of this aesthetic restoring material. Initially, eight types of commercial composites, of the type photocurable were used in this investigation: FILTEKTM Z350 (3M ESPE), FILTEKTM Z250 (3M ESPE), Z100 (3M ESPE), Opallis (FGM), Charisma (Heraues Kulzer), Master Fill (Biodinâmica), Suprafill (SSWhite) and Fillmagic (Vigodent). They were used for the photo activation of the samples a halogenic source (Kehr XR Light) and a source LED Ultra Blue (Dabi Atlante). Due to the nature of the radical generated during the photopolymerization process, EPR spectroscopy was used to probe the behavior of that paramagnetic species under several conditions. In addition, Fourier Transform Infrared spectroscopy (FTIR), and experimental techniques of mechanical resistance (flexural and compression), microhardness, volumetric contraction, polymerization depth, Scanning Electron Microscopy, Energy Dispersive System (EDS), sorption and solubility, tests of scratching and measure of the translucency degree were accomplished for the obtaining of additional information. The combination of those methods was used with success facilitating the understanding of the material behavior under study. Through the analysis of the data obtained by EPR was possible to verify that the polymerization continues doing happen after the conclusion of the photopolymerization; that the spectrum of EPR show the contribution of two species of radicals; that the irradiation dose should be differentiated for the resins, being dependent of the chemical composition, of the composite color and of the translucency degree, among other factors, these have significant influences on the mechanical acting of the material; The re-irradiated resin, after 24h of irradiation generated new radicals, indicating that a fraction of the initiators agents of the polymerization had not reacted still; the resin stored in water at 370C showed a faster polymerization. The results of the used techniques are complemental and they indicate the resin that generated larger number of free radicals, identified for EPR, show better quality.
40

Conformational changes of alpha-synuclein, ABC and ECF transporters observed by high pressure EPR and DEER

Sippach, Michael 09 February 2018 (has links)
In this work two overall subjects were addressed. 1. In recent years high pressure perturbance has become a tool to investigate the folding energy landscape, the volumetric properties and the conformational equilibria of proteins. Conformational states which are not populated at ambient conditions thus become accessible to spectroscopic characterization. In this work a high pressure application was combined with EPR spectroscopy to investigate three spin labeled proteins, BSA from Bos taurus, HisJ from Salmonella enterica serovar Typhimurium and α-synuclein from Homo sapiens. The goal of these studies was to comprehend the influence of pressure on the respective EPR spectra and to identify changes in conformational equilibria and volumetric properties of the investigated proteins. Studies on BSA revealed a negative activation volume for rotational diffusion of the spin labeled site. Moreover, a rotameric equilibrium was derived from the pressure-dependent side chain dynamics and a correlating negative partial molar volume was observed, indicating a shift of the rotameric equilibrium to lesser order. In this regard it was also shown that a chaotropic medium (guanidine hydrochloride) supports the pressure-dependent effect. Spin labeled sites in the substrate binding protein HisJ revealed to be highly influenceable by low pressures between ambient conditions and 200 bar. Pressurization induced oligomerization and precipitation of the protein. Substrate binding revealed differences in pressure-dependence with regard to a decreased precipitation effect but not in relation to oligomerization. The natively unfolded protein α-synuclein plays a key role in Parkinson´s disease and is known for forming β-sheet rich aggregates, so called amyloid fibrils. The experimental data of this work revealed that hydrostatic pressure can induce a non-amyloid aggregation of monomeric α-synuclein which produces an unspecific oligomer. Furthermore, it was shown that α-synuclein amyloid fibrils can be dissolved by hydrostatic pressure. From the pressure dependent conformational equilibrium between the monomer and the fibril form the change of the partial molar volume of the investigated site was determined. 2. The second subject of this work was focused on different import systems, ATP-binding cassette (ABC) transporters and Energy-Coupling-Factor (ECF) transporters, for amino acids, vitamins and metal ions in prokaryotes. Studies on one bacterial ABC and two ECF transporter systems from two different organisms, the histidine ABC-type transporter HisQMP2 from Salmonella enterica serovar Typhimurium, the biotin ECF-type importer BioMNY from Rhodobacter capsulatus and the cobalt-specific ECF-type transporter CbiMNQO from Rhodobacter capsulatus, were performed using DEER and cw EPR spectroscopy. The goal of the studies on HisQMP2 and BioMNY was to shed light on conformations and dynamics connected to their transporter function. Studies on CbiMNQO aimed at the detection of the substrate in the transporter´s substrate binding unit. For HisQMP2 transport cycle dependent conformational changes and interactions with the substrate binding protein HisJ were revealed. Three different distance values between sites H101R1 and H101’R1 in the transporter´s nucleotide binding domains were assigned to the apo-, the ATP-bound and the posthydrolysis state. It was shown that the closed conformation of the nucleotide binding domains is achieved only in the presence of the ligand-bound HisJ which indicates a transmembrane communication of the association of HisJ to the transporter. Furthermore, interspin distances were determined between sites D86R1-A96R1, C197R1-C104R1 and A118R1-G123R1 in the transmembrane domains HisQ and HisM revealing distinguishable conformational states which correlate to the different states of the nucleotide binding sites during the hydrolysis cycle. Measured interspin distances between HisJ and HisM in the HisQMP2 complex showed that interaction only occurred in the closed state of the HisP2 dimer, the nucleotide bound state. Two different, substrate-dependent interactions between site G24R1 in HisJ and site A96R1 in HisQMP2 were observed, revealing that the substrate-free and substrate-bound form of HisJ both associate with HisQMP2. Distance measurements between sites G24R1 and T151R1 in HisJ in the presence and absence of its substrate revealed interspin distance changes that correlate with the proteins open and closed conformation. Investigations on the ECF transporter BioMNY, reconstituted into nanodiscs, revealed a closure and reopening of the nucleotide binding domains between sites H87R1 and H87’R1 using DEER spectroscopy which delivered interspin distance values that correlate with the apo-, the ATP-bound and the posthydrolysis state of the transporter. Further experiments were aimed to shed light on the transporters substrate-translocation mechanism with regard to the so called toppling over mechanism. Unfortunately, the experiments of this work were not able to give a distinct answer with respect to the proposed model because of the transmembrane domains tendency to oligomerize when reconstituted into nanodiscs. In this work we showed that substrate uptake by the substrate binding unit CbiM of the cobalt-specific ECF transporter CbiMNQO depends on the presence of the small transmembrane protein CbiN. Measurements of spin labeled CbiMN in detergent showed oligomerization of CbiM.

Page generated in 0.0867 seconds