• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Melanization and Hemocyte Homeostasis  in the Freshwater Crayfish, Pacifastacus leniusculus

Noonin, Chadanat January 2013 (has links)
Blood cells or hemocytes play important roles in immunity. They are a major source of many immune-related molecules such as antibodies in adaptive immunity of vertebrates and prophenoloxidase (proPO) in invertebrates. In the crayfish Pacifastacus leniusculus, the proPO-system has been reported to be an important component of immune responses against microorganisms. In this study, several mutant strains of Aeromonas hydrophila were used to reveal that LPS (lipopolysaccharide) is an important factor for the pathogenicity of A. hydrophila, strongly inducing the proPO system and melanization. This proPO activating system is a multistep process, which has to be tightly controlled to avoid the harmful side effects of toxic intermediates. Many regulating factors have been reported to fine-tune the proPO-system. In this study, the cleavage of caspase-1-like activity was shown to be a novel negative regulator of PO activity in crayfish. Moreover, the fragments obtained by cleavage of proPO by the proPO-activating enzyme and caspase-1-like protein increased bacterial clearance. Thus, the peptides generated also have important biological functions. In addition to being a source of immune proteins, hemocytes also participate in phagocytosis, encapsulation, and nodulation. An infection normally causes a reduction of hemocyte numbers. Consequently, hemocyte homeostasis is important for maintaining appropriate hemocyte numbers in the circulation of the animal. This study shows that the reactive oxygen species level in the anterior proliferation center of crayfish hematopoietic tissue (HPT), together with cell proliferation, was increased during infection. Pl-β-thymosins were proposed to be involved in hemocyte homeostasis by increasing stem cell migration and thus increasing the circulating hemocyte number. Crayfish hemocyte numbers, as well astakine (Ast1 and Ast2) expression in hemocytes and HPT, were previously shown to be under circadian regulation. Here, we show that Ast1, Ast2, and proPO exhibit rhythmic expression in the crayfish brain similarly to their orthologs, prokineticin 1, prokineticin 2 and tyrosinase, respectively, in the zebrafish brain. Tyrosinase expression was detected in zebrafish brain cells while PO-positive cells were identified as hemocytes that had infiltrated into the crayfish brain. Therefore, this information suggests a close relationship between crayfish hemocytes and the crayfish brain as well as vertebrate neurons.
2

Alkali Insoluble Glucan Extracted From Acremonium Diospyri Is a More Potent Immunostimulant in the Indian White Shrimp, Fenneropenaeus Indicus Than Alkali Soluble Glucan

Anas, Abdulaziz, Lowman, Douglas W., Williams, David L., Millen, Stewart, Pai, Srinivas Somnath, Sajeevan, Thavarool Puthiyedathu, Philip, Rosamma, Singh, Isaac Sarojeni 01 July 2009 (has links)
Effect of an extraction method on the structure of glucan and its immunostimulatory response in Fenneropenaeus indicus was investigated. Here we extracted alkali insoluble glucan (AIG) and alkali soluble glucan (ASG) from a filamentous fungi Acremonium diospyri following alkali-acid hydrolysis and the sodium hypochlorite oxidation and dimethyl sulphoxide extraction method respectively. Structural analysis showed that 85% of glucan in AIG was a (1→3)-β-d-glucan and it increased the prophenoloxidase and reactive oxygen intermediate activity when administered to F. indicus. On the other hand, ASG, which contained 93% (1→3)-α-glucan, did not induce significant immune response in shrimp. Here we report that the difference in immunostimulatory potential between AIG and ASG is due to the difference in the percentage of (1→3)-β-d-glucans present in each preparation, which varies with the method of extraction employed. Also our observations suggest that glucan can be used as a potential immunostimulant to shrimp, provided it contains (1→3)-β-d-glucan as the major fraction.
3

Parasite on Crayfish : Characterisation of Their Pathogenesis, Host Interactions and Diversity

Bangyeekhun, Eakaphun January 2002 (has links)
<p>The crayfish plague refractory crayfish, <i>Pacifastacus leniusculus</i>, which can harbour the fungal parasite within melanotic sheath, are found to constitutively express the gene encoding for prophenoloxidase (proPO) after mimicking parasite attack. In contrast, the susceptible crayfish, <i>Astacus astacus</i>, responds to the parasite by increased levels of proPO transcript, particularly in the semigranular haemocytes. The upregulation of proPO could confer a temporary resistance towards the fungal infection, suggesting that additional factors are involved in maintaining the balance between host and parasite. The resistant crayfish may have adapted to the parasite by increasing the transcript level of immune genes. The parasite can be considered as a symbiont since it does not harm the host rather than it activates the immune gene and possibly preventing other pathogens to become established.</p><p>Two serine proteinase genes encoding a subtilisin-like (<i>AaSP1</i>) and a trypsin (<i>AaSP2</i>) enzyme were isolated from the crayfish plague fungus, <i>Aphanomyces astaci</i>. These proteinases are prepropeptides and generate mature proteins of 39 kDa and 29 kDa, respectively. Characterisation of <i>AaSP1</i> suggests that the enzyme may be involved in intracellular control mechanisms rather than playing a role in pathogenesis. The <i>AaSP2 </i>transcript was not controlled by catabolic repression, but was induced by crayfish plasma, implying a role in pathogenesis toward the crayfish host. </p><p>Physiology and genetics of five <i>Aphanomyces</i> strains, which were isolated from moribund crayfish, were characterised with regard to their pathogen diversity. These strains are not virulent against crayfish. Some physiological properties of these strains differed from <i>A. astaci</i>, such as growth rate, germination and production of chitinase. Genetic analysis clearly indicated that they are not related to <i>A. astaci</i> and their name are proposed to be <i>Aphanomyces repetans</i>.</p><p>The crayfish <i>P. leniusculus </i>was found to be susceptible to white spot syndrome virus infection. The virus has a significant effect to the population of crayfish haemocyte. The number and proportion of granular cell from virus-infected crayfish were higher than in controls, indicating granular cells are more resistant to and may interact by some means with the virus.</p><p>Two morphotypes of the crayfish parasite <i>Psorospermium haeckeli</i> obtained from different crayfish hosts of different geographical origin were analysed for ribosomal ITS DNA in order to compare their genetic diversity. The sequence difference between them was found largely in ITS 1 and ITS 2 regions, which was variable in length and showed 66% and 58% sequence similarity. Thus, different morphotypes of <i>P. haeckeli</i> are genetically diverse.</p>
4

Parasite on Crayfish : Characterisation of Their Pathogenesis, Host Interactions and Diversity

Bangyeekhun, Eakaphun January 2002 (has links)
The crayfish plague refractory crayfish, Pacifastacus leniusculus, which can harbour the fungal parasite within melanotic sheath, are found to constitutively express the gene encoding for prophenoloxidase (proPO) after mimicking parasite attack. In contrast, the susceptible crayfish, Astacus astacus, responds to the parasite by increased levels of proPO transcript, particularly in the semigranular haemocytes. The upregulation of proPO could confer a temporary resistance towards the fungal infection, suggesting that additional factors are involved in maintaining the balance between host and parasite. The resistant crayfish may have adapted to the parasite by increasing the transcript level of immune genes. The parasite can be considered as a symbiont since it does not harm the host rather than it activates the immune gene and possibly preventing other pathogens to become established. Two serine proteinase genes encoding a subtilisin-like (AaSP1) and a trypsin (AaSP2) enzyme were isolated from the crayfish plague fungus, Aphanomyces astaci. These proteinases are prepropeptides and generate mature proteins of 39 kDa and 29 kDa, respectively. Characterisation of AaSP1 suggests that the enzyme may be involved in intracellular control mechanisms rather than playing a role in pathogenesis. The AaSP2 transcript was not controlled by catabolic repression, but was induced by crayfish plasma, implying a role in pathogenesis toward the crayfish host. Physiology and genetics of five Aphanomyces strains, which were isolated from moribund crayfish, were characterised with regard to their pathogen diversity. These strains are not virulent against crayfish. Some physiological properties of these strains differed from A. astaci, such as growth rate, germination and production of chitinase. Genetic analysis clearly indicated that they are not related to A. astaci and their name are proposed to be Aphanomyces repetans. The crayfish P. leniusculus was found to be susceptible to white spot syndrome virus infection. The virus has a significant effect to the population of crayfish haemocyte. The number and proportion of granular cell from virus-infected crayfish were higher than in controls, indicating granular cells are more resistant to and may interact by some means with the virus. Two morphotypes of the crayfish parasite Psorospermium haeckeli obtained from different crayfish hosts of different geographical origin were analysed for ribosomal ITS DNA in order to compare their genetic diversity. The sequence difference between them was found largely in ITS 1 and ITS 2 regions, which was variable in length and showed 66% and 58% sequence similarity. Thus, different morphotypes of P. haeckeli are genetically diverse.

Page generated in 0.0582 seconds