• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 97
  • 28
  • 26
  • 13
  • 10
  • 6
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 386
  • 62
  • 46
  • 31
  • 30
  • 24
  • 24
  • 22
  • 21
  • 17
  • 17
  • 16
  • 16
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Vascular Anatomy of the Rabbit Ureter

Douglas, Glenn C., Hossler, Fred E. 01 January 1995 (has links)
Background: The success of kidney transplant surgery and ureteral reconstruction requires the preservation of the ureteral blood supply. Because of its potential vulnerability to surgical trauma during trans plant and reconstructive surgery, the ureteral vasculature merits a full anatomical description. Methods: The microvascular anatomy of the ureter was studied in male New Zealand white rabbits by light microscopy and transmission electron microscopy and scanning electron microscopy of vascular corrosion casts and alkali digested tissue. Results: The rabbit ureter is supplied predominantly by a branch of the renal artery proximally (cranial ureteral artery) and by a branch of the vesicular artery distally (caudal ureteral artery). Minor vascular continuities are also present between the capillary beds of the ureter and those of the renal pelvis cranially and the bladder wall caudally. There are no external vascular connections to the middle ureter with the exception of a single, small vein which drains into the inferior vena cava. A single group of longitudinal arteries and veins runs the full length of the ureter within the adventitia. Branches of these longitudinal vessels pass tangentially through the muscularis to supply a vascular complex within the lamina propria. This complex in turn supports a rich, mucosal capillary plexus located at the junction between the transitional epithelium and the lamina propria. In the fixed ureter the capillary plexus lies in grooves formed by displacement of the basal layers of the overlying transitional epithelium. The capillaries are continuous or fenestrated, are often invested with pericytes, and are distributed uniformly around the entire circumference of the ureter. Conclusions: The ureteral vasculature exhibits several unique features related to its function in urine conduction and its ability to accommodate expansion and contraction. The combination of techniques used provides a clear three‐dimensional view of this vasculature. Our findings also confirm that, because of its limited blood supply, the ureter may be very susceptible to injury during renal transplantation or other abdominal surgery.
202

Microvasculature of the Rabbit Urinary Bladder

Hossler, Fred E., Monson, Frederick C. 01 January 1995 (has links)
Background: The urinary bladder requires a rich blood supply to maintain its functions, the storage and release of urine. Specialized properties of the bladder vasculature might be anticipated to ensure the integrity of this blood supply, because it is known that blood flow is reduced by distension during bladder filling. However, the bladder vasculature has been described in detail only at the gross level. A comprehensive, threedimensional view of the blood supply to the bladder wall is presented here. Methods: The microvasculature of the bladder of male New Zealand white rabbits was described using the combination of vascular corrosion casting, alkali digestion, light microscopy, and scanning and transmission electron microscopy. Following administration of an anticoagulant and an overdose of anesthetic, the abdominal aorta was cannulated just above the inferior mesenteric artery to permit flushing of the distal vasculature. The bladder vasculature was cleared of blood with buffered saline and then either perfuse‐fixed with buffered 2% glutaraldehyde and sectioned, or filled with “Mercox” resin to prepare vascular corrosion casts. Casts were cleaned with NaOH, formic acid, and water. In some cases fixed bladders were partially digested with NaOH to expose the mucosal capillary plexus. Results: The bladder is supplied with blood by single, left and right vesicular branches of the internal or external iliac arteries. The serpentine vesicular arteries extend along the lateral borders of the bladder from base to apex just deep to the serosal surface and send dorsal and ventral branches to supply the dorsal and ventral bladder walls. Veins accompany the arteries and exhibit numerous valves. A very dense complex of vessels at the apex of the bladder apparently serves to accommodate bladder distension. The muscularis and submucosa contains few vessels, but the mucosa is well vascularized. An especially dense capillary plexus is present in the lamina propria at its junction with the transitional epithelium. In the relaxed bladder these capillaries lie in grooves formed by the basal layers of the epithelium. The endothelial cells of these capillaries display few cytoplasmic vesicles and are continuous or fenestrated. These capillaries are often invested with pericytes. The mucosal capillary plexus may be associated with an epithelial transport function or may be necessary for urothelial metabolism or maintenance of the barrier function of the urothelium. Unusual capillary tufts, possibly associated with vascular lymphatic tissue, are found associated with the main vessels on the lateral walls in the basal half of the bladder. Conclusions: These methods present a clear, comprehensive, three‐dimensional view of the microvasculature of the bladder wall. They also identify several unique features of this vasculature and provide a basis for studies of the response of this vasculature to pathologic states and experimental manipulation.
203

Effects of Electrical Stimulation of the Pontine A5 Cell Group on Blood Pressure and Heart Rate in the Rabbit

Woodruff, Michael L., Baisden, Ronald H., Whittington, Dennis L. 30 July 1986 (has links)
The effects of electrical stimulation of the A5 noradrenergic cell group of the ventrolateral pons was assessed in rabbits. Stimulation administered through either concentric bipolar or monopolar electrodes produced current-intensity related increases in mean arterial pressure (MAP). Decreases in heart rate (HR) accompanied the increases in MAP, but were essentially eliminated by bilateral vagotomy or destruction of the nucleus and tractus solitarii (NTS), thereby indicating that the HR decelerations were secondary to activation of baroreceptor reflexes. Neither vagotomy nor midcollicular section of the brainstem altered the MAP response to A5 stimulation. Bilateral destruction of the NTS slightly enhanced the response. Several rabbits received microinjections of 6-hydroxydopamine (6-OHDA) into the A5 region 2 weeks before the experiment. Other rabbits received vehicle injections and served as control subjects for the non-specific effects of the 6-OHDA injections. 6-OHDA injections, but not vehicle injections, prevented the vasopressor effects of A5 stimulation. However, stimulation of the A1 noradrenergic nucleus of the ventrolateral medulla produced decreases in MAP in rabbits given prior microinjections of 6-OHDA into A5. These observations are interpreted to indicate that the 6-OHDA injections produced neurotoxic effects which were relatively restricted to the A5 region. Furthermore, the data from all of these experiments are interpreted as indicating that the vasopressor effects observed as a consequence of electrical stimulation of A5 are due to excitation of the noradrenaline-containing neuron cell bodies of this region and that this effect is mediated via pathways arising from this region and terminating in the intermediolateral cell column of the spinal cord.
204

Age-related Differences in Survival of AKR/J Mice Treated With Anti-Lymphocyte Globulins, Anti-Thymocyte Globulins, and Rabbit Anti-Mouse Brain Serum

Senn, Donald E. 05 1900 (has links)
This investigation was designed to study the age-related differences in the survival rates of 2-to 3- and 6- to 7-month-old AKR/J mice after continuous treatment with anti-lymphocyte globulins (ALG), anti-thymocyte globulins (ATG), or rabbit anti-mouse brain serum (RAMB).
205

An Implantable, Stimulated Muscle Powered Piezoelectric Generator

Lewandowski, Beth Elaine 02 April 2009 (has links)
No description available.
206

An Olfactory Enrichment Study at the Ashland Cat Shelter

Myatt, Alicia Elaine 03 December 2014 (has links)
No description available.
207

DESIGN PARAMETERS FOR TISSUE ENGINEERED IMPLANTS FOR RABBIT PATELLAR TENDON AND ACHILLES TENDON REPAIRS

JUNCOSA, LAURA NATALIA 11 June 2002 (has links)
No description available.
208

THE USE OF FUNCTIONAL TISSUE ENGINEERING AND MESENCHYMAL STEM CELL SEEDED CONSTRUCTS FOR PATELLAR TENDON REPAIR

JUNCOSA-MELVIN, LAURA NATALIA 27 September 2005 (has links)
No description available.
209

Potential mechanisms for drug-induced prolongation of QT interval and genesis of torsades de pointes evaluated in the failing rabbit heart

Kijtawornrat, Anusak 05 January 2007 (has links)
No description available.
210

THE ROLE OF HBZ IN HTLV-1 BIOLOGY

Arnold, Joshua E. 24 June 2008 (has links)
No description available.

Page generated in 0.0423 seconds