• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 714
  • 425
  • 180
  • 84
  • 38
  • 28
  • 21
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • Tagged with
  • 2203
  • 923
  • 427
  • 376
  • 340
  • 213
  • 198
  • 178
  • 173
  • 164
  • 157
  • 156
  • 145
  • 145
  • 121
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
711

THERMODYNAMIC MODELING AND EQUILIBRIUM SYSTEM DESIGN OF A SOLVENT EXTRACTION PROCESS FOR DILUTE RARE EARTH SOLUTIONS

Chandra, Alind 01 January 2019 (has links)
Rare earth elements (REEs) are a group of 15 elements in the lanthanide series along with scandium and yttrium. They are often grouped together because of their similar chemical properties. As a result of their increased application in advanced technologies and electronics including electric vehicles, the demand of REEs and other critical elements has increased in recent decades and is expected to significantly grow over the next decade. As the majority of REEs are produced and utilized within the manufacturing industry in China, concerns over future supplies to support national defense technologies and associated manufacturing industries has generated interest in the recovery of REEs from alternate sources such as coal and recycling. A solvent extraction (SX) process and circuit was developed to concentrate REEs from dilute pregnant leach solutions containing low concentrations of REEs and high concentrations of contaminant ions. The separation processes used for concentrating REEs from leachates generated by conventional sources are not directly applicable to the PLS generated from coal-based sources due to their substantially different composition. Parametric effects associated with the SX process were evaluated and optimized using a model test solution produced based on the composition of typical pregnant leach solution (PLS) generated from the leaching of pre-combustion, bituminous coal-based sources. Di-2(ethylhexyl) phosphoric acid (DEHPA) was used as the extractant to selectively transfer the REEs in the PLS from the aqueous phase to the organic phase. The tests performed on the model PLS found that reduction of Fe3+ to Fe2+ prior to introduction to the SX process provided a four-fold improvement in the rejection of iron during the first loading stage in the SX circuit. The performances on the model system confirmed that the SX process was capable of recovering and concentrating the REEs from a dilute PLS source. Subsequently, the process and optimized parametric values were tested on a continuous basis in a pilot-scale facility using PLS generated from coal coarse refuse. The continuous SX system was comprised of a train of 10 conventional mixer settlers having a volume of 10 liters each. A rare earth oxide (REO) concentrate containing 94.5% by weight REO was generated using a two- stage (rougher and cleaner) solvent extraction process followed by oxalic acid precipitation. The laboratory evaluations using the model PLS revealed issues associated with a third phase formation. Tributyl Phosphate (TBP) is commonly used as a phase modifier in the organic phase to improve the phase separation characteristics and prevent the formation of a third phase. The current study found that the addition of TBP affected the equilibrium extraction behavior of REE as well as the contaminant elements., The effect on each metal was found to be different which resulted in a significant impact on the separation efficiency achieved between individual REEs as well as for REEs and the contaminant elements. The effect of TBP was studied using concentrations of 1% and 2% by volume in the organic phase. A Fourier Transform Infrared (FTIR) analysis on the mixture of TBP and DEHPA and experimental data quantifying the change in the extraction equilibrium for each element provided insight into their interaction and an explanation for the change in the extraction behavior of each metal. The characteristic peak of P-O-C from 1033 cm-1 in pure DEHPA to 1049 cm-1 in the 5%DEHPA-1%TBP mixture which indicated that the bond P-O got shorter suggesting that the addition of TBP resulted in the breaking of the dimeric structure of the DEHPA and formation of a TBP-DEHPA associated molecule with hydrogen bonding. The experimental work leading to a novel SX circuit to treat dilute PLS sources was primarily focused on the separation of REEs from contaminant elements to produce a high purity rare earth oxide mix product. The next step in the process was the production of individual REE concentrates. To identify the conditions needed to achieve this objective, a thermodynamic model was developed for the prediction of distribution coefficients associated with each lanthanide using a cation exchange extractant. The model utilized the initial conditions of the system to estimate the lanthanide complexation and the non-idealities in both aqueous and organic phases to calculate the distribution coefficients. The non-ideality associated with the ions in the aqueous phase was estimated using the Bromley activity coefficient model, whereas the non-ideality in the organic phase was computed as the ratio of the activity coefficient of the extractant molecule and the metal extractant molecule in the organic phase which was calculated as a function of the dimeric concentration of the free extractant in the organic phase. To validate the model, distribution coefficients were predicted and experimentally determined for a lanthanum chloride solution using DEHPA as the extractant. The correlation coefficient defining the agreement of the model predictions with the experimental data was 0.996, which is validated the accuracy of the model. As such, the developed model can be used to design solvent extraction processes for the separation of individual metals without having to generate a large amount of experimental data for distribution coefficients under different conditions.
712

Photon avalanching in Tm³⁺:NaYF₄ nanocrystals and its applications

Lee, Changhwan January 2022 (has links)
Photon avalanching (PA), one of the more unique nonlinear optical processes due to its combination of efficiency and extreme response, first attracted attention from the optics community more than four decades ago. But interest waned as researchers found that it did not provide immediately useful features observed in other nonlinear optical systems, such as amplified coherent light generation from lasing or optoelectronic amplification and transduction afforded by light-stimulated electron avalanching. The material systems supporting PA were also found to be rather limited, with reports concentrating on fragile, bulk lanthanide-doped crystals. However, the inter-ionic energy transfer mechanisms responsible for PA and its extreme nonlinearity are, in principle, realizable in objects with dimensions at the nanoscale. Further, new applications for PA in nanomaterials including simple super-resolution microscopy have recently been proposed. These factors motivated my research on the development of the first-ever lanthanide-doped nanoparticles capable of supporting PA behavior. In this thesis, the optical properties of Tm³⁺-doped NaYF₄ nanocrystals are investigated with photoluminescence microscopy, spectroscopy and differential rate equation model simulations. First, the photon avalanching behavior of Tm³⁺-doped NaYF₄ nanocrystals is studied. Specifically, the excitation-power-dependent luminescence of 1%, 4%, 8%, 20%, and 100% Tm³⁺-doped NaYF₄ is measured. The slopes of log-log excitation intensity versus emission intensity plots show that photon avalanche is realized in the nanocrystals when Tm³⁺ content is 8% and above. Time-resolved luminescence and rate equation model fitting to the experimental data validate the existence of photon avalanche, showing luminescence rise times > 600 ms, and the ratio of the ³F₄-to-³F₃ excited state absorption to the ³H₆-to-³F₄ ground state absorption is > 10⁴, which are signatures of photon avalanche. The design-dependent shift of the photon avalanching threshold also shows that photon avalanche is the main excitation scheme for the nanocrystals and implies potential applications for ultra-sensitive nano-sensing with the help of extreme nonlinearity. Additionally, the steep nonlinearity leads to super-resolution microscopy of single 8% Tm³⁺-doped nanocrystals with resolution down to <70 nm using conventional confocal microscopy without sophisticated techniques. In the second part of the thesis, the photodarkening effect of Tm³⁺-doped NaYF₄ nanocrystals is studied. We have found that photodarkening behavior is observed in Tm³⁺-doped nanocrystals that exhibit the photon avalanche effect. Power-dependent luminescence of a single 8% Tm3+-doped nanocrystal reveals that photodarkened nanocrystals still support photon avalanche behavior, but the avalanching threshold is shifted to a higher value. A photodarkening mechanism is proposed based on the concentration-dependent and power-dependent luminescence properties, and optical spectroscopic data. Notably, photodarkened nanocrystals are found to recover their original brightness and behavior under Vis-NIR optical illumination. This so-called “photobrightening” allows novel photoswitching of the inorganic nanocrystals, which has never before been achieved. We observe robust single nanocrystal photoswitching over 1000 cycles without permanent photodegradation. In addition, rewritable photolithography of multiple patterns using NIR lasers at 700 nm and 1064 nm is demonstrated.
713

Rare-earth distributions in the marine environment.

Spirn, Regina Volfovsky January 1966 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Geology and Geophysics, 1966. / Vita. / Bibliography: leaves 137-143. / Ph.D.
714

Search for the Decay KL→π0νν with a Neutron-Insensitive GeV-Energy Photon Detector / 中性子に不感なGeV光子検出器を用いた KL→π0νν崩壊の探索

Maeda, Yosuke 23 March 2016 (has links)
要旨ファイルを2017-04-17に差替え / 京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19502号 / 理博第4162号 / 新制||理||1598(附属図書館) / 32538 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 中家 剛, 教授 谷森 達, 准教授 成木 恵 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
715

Isomerization of Saccharides in Subcritical Aqueous Alcohols / 亜臨界含水アルコール中での糖の異性化

Gao, Da-Ming 23 March 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第19754号 / 農博第2150号 / 新制||農||1038(附属図書館) / 学位論文||H28||N4970(農学部図書室) / 32790 / 京都大学大学院農学研究科食品生物科学専攻 / (主査)教授 安達 修二, 教授 入江 一浩, 教授 保川 清 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
716

Development of a low-mass high-efficient charged particle detector for KL→π0νν search(KL→π0νν探索のための低物質量、高検出効率の荷電粒子検出器の開発) / KL→π0νν探索のための低物質量、高検出効率の荷電粒子検出器の開発

Naito, Daichi 23 May 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19882号 / 理博第4209号 / 新制||理||1605(附属図書館) / 32959 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 中家 剛, 教授 谷森 達, 教授 永江 知文 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
717

In silico study of medical decision-making for rare diseases: heterogeneity of decision-makers in a population improves overall benefit / 希少疾患における医療上の決断に関するインシリコ研究:集団における決断の多様性がもたらす利益について

Wang, Juan 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21631号 / 医博第4437号 / 新制||医||1034(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 川上 浩司, 教授 松田 文彦, 教授 黒田 知宏 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
718

Catalytic Activities of Rare-Earth Metal Triflates for Heterocyoclization and Direct Alcohol Transforrnations / へテロ環構築反応およびアルコールの直截的変換反応における希土類金属トリフレートの触媒活性に関する研究

Di, Yuanjun 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21788号 / 工博第4605号 / 新制||工||1717(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 近藤 輝幸, 教授 辻 康之, 教授 大江 浩一 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
719

Applying Forward Genetic Approaches to Rare Mendelian Disorders and Complex Traits

Chen, Anlu 31 August 2018 (has links)
No description available.
720

CONTAMINANTS REMOVAL AND RARE EARTH ELEMENTS RECOVERY FROM COAL MINE DRAINAGE BY USING (BIO)(ELECTRO) CHEMICAL METHODS

Peiravi, Meisam 01 August 2018 (has links) (PDF)
Mining activities, as essential as they are for our economy and our society, bring pollutants such as acid mine drainage (AMD) which contains dissolved metal(loid)s into the environment. There are different technologies currently being practiced to treat AMD, but many of these methods are prohibitive in industry due to high energy, material and labor requirements. This study investigated two emerging technologies to treat AMD with high removal rates of some metals. In addition, as AMD contains strategic metals such as rare earth elements (REEs), hydrometallurgical and biosorptive approaches were used to recover REEs from AMD, hydrometallurgical recovery method was also applied for coal by-products for the method developed. A two-chamber bioelectrochemical system (BES) was used to remove different types of metals from AMD. After 7 days, the pH of the cathode solution increased from 2.5 to 7.3. More than 99% of Al, Fe and Pb were removed, and removal rates of 93%, 91%, 89% and 69% were achieved for Cd, Zn, Mn, and Co, respectively, at the biocathode. Energy-dispersive X-ray spectroscopy (EDS) studies revealed the deposition of the various metals on the cathode surface, and some metals were detected in precipitates from the cathode chamber. During the BES operation, ~30-50 mV of closed circuit voltage was obtained for different conditions. A single-chambered BES study was conducted for the removal of Cd, Ni, and Mn in mine drainage. Compared to a double chamber, a single chamber BES is easier to design and operate. The removal process was studied with activated sludge from a local wastewater treatment plant. The effect of applied voltage, time, and initial concertation of these metals on their removal rate was studied. For Cd initial concentrations of 625 and 165 µg/L, 1.0 V showed the highest removal efficiency, and ~93 and 95% of Cd were removed, respectively. For a Ni initial concentration of 2,440 µg/L, 72% was removed under 1.0 V compared to the control of 77%. However, for a lower initial Ni concentration of 190 µg/L, 1.0 V was better compared than other conditions, and it removed 92% of Ni. For a Mn initial concentration of 1,800 µg/L, 1.0 V had a better result, however, only ~19% of the Mn was removed. For a lower Mn initial concentration of 390 µg/L, 1.0 V was favorable only at 24 h and the removal rate was ~37%. Nanoscale zerovalent iron (nZVI) was used to remove contaminants from AMD. These contaminants include transition metals (Co, Ni, Cu, Mn, and Zn), alkali and alkaline earth metals (Li, Mg, and Ca), metalloid (As), nonmetals (Se and S), and active metal (Al). Purchased nZVI in concentrations of 10-6500 mg/L was used for a reaction duration of up to 480 min. The pH of the AMD increased linearly with increasing concentrations of nZVI, with a maximum of 6.0±0.1 at 6500 mg/L of nZVI. Cu and Al had the highest removal rate among all other elements. With 10 mg/L of nZVI, ~100% of Cu was removed within 120 min. Up to ~98% of Al was removed with 5000 mg/L of nZVI in 480 min. Reuse of the purchased nZVI was studied for the first time for AMD treatment; however, after reuse in the second cycle, the nZVI was no longer effective. Lab-made nZVI by the precipitation method was tested for a longer time of 48 h. Removal rates for different elements did not change after ~8 h (e.g., 480 min), and in general, the lab-made nZVI had better removal efficiency compared to the purchased nZVI, with removal rate of ~28-79% when using 80 mg/L of the lab-made nZVI. Besides Cu, Al, Ni, and Co, successful removal of Mg and Ca, as well as S, Co, Li, As, and Se from AMD was reported for the first time by using nZVI. Different coal ranks were examined for REE concentration from coal ash. Maximum REE content of more than 700 mg/kg was observed for the highest-rank coal (anthracite) sample, and that was used for leaching and recovery studies. Hydrometallurgical processes including leaching, solvent extraction, stripping, and precipitation were performed to recover REEs from coal ash. Nitric acid leaching tests were conducted at 95 ℃ using a 4×2×2 factorial design. The results indicated that the highest rate of light REEs (LREEs) recovery was achieved at the highest molarity of the acid solution, lowest solids content and longest retention time. However, the highest rate of heavy REEs (HREEs) recovery needed only an intermediate level of acid molarity. The highest recovery rates of 90% for LREEs and 94% for HREEs were obtained. Recirculation of the leachate was conducted to prepare the REE-concentrated solution for the solvent extraction. After two stages of leaching, a 33 mg/L of TREE concentration was obtained in the leachate. Solvent extraction (SX) tests conducted using three different extractants, namely, TBP, D2EHPA and Cyanex 572, and their combinations showed that D2EHPA was the best extractant for recovering REEs from the nitric acid leachate solution with an extraction efficiency of 99%. Nitric acid and sulfuric acid and their mixture were used in the stripping tests. The effect of solvent concentration (in the SX process) was also studied in the stripping stage. When 50% solvent concentration was used, a maximum of 58% stripping recovery was obtained. Oxalic acid helped precipitate ~94% of total REEs (TREEs) from the above aqueous solution. Calcination of the product was performed to reach a final product of 0.8% rear earth oxides (REOs). The same process flowsheet was also successfully tested for another coal ash sample. To recover REEs from AMD, two different approaches were carried out including hydrometallurgical technique and more environmentally friendly approach- biosorptive recovery. A complete process flowsheet including either solvent extraction or biosorption, followed by stripping, and precipitation was developed to recover REEs from an unconventional source of AMD for the first time. At the natural pH of 2.5 almost all REEs were extracted from the solution. Metal-loaded organic solution was reused for three cycles, and it was shown that after three cycles, there was no major reduction in the capacity of the extractant. Striping with 6.0 M HNO3 recovered 23.9±0.7, 74.7±2.1, and 53.1±1.4% of LREEs, HREEs, and TREEs from the organic phase accordingly. Using oxalic acid, and for pH of 2.0, 92.9±2.8% of LREEs, 10±1.5% of HREEs, and 56.2±1.8% of TREEs were precipitated. In the biosorptive extraction, >99% of TREEs were extracted from the solution. The REE-bearing bacteria was also stripped with 6.0 M HNO3, 2871.3±114.8 µg/L (45.0±1.8%) LREEs, 3851.0±154.0 µg/L (65.0±2.6%) HREEs, and 6722.0±268.9 µg/L (50.0±2.0%) TREEs were obtained. Both hydrometallurgical and biosorptive methods extracted almost all of the REEs in the AMD, though pH was adjusted to 4.0 for the biosorptive method. After stripping, comparable amounts of TREEs were obtained by both methods.

Page generated in 0.0308 seconds