311 |
Pharmaceutical Properties of Nanoparticulate Formulation Composed of TPGS and PLGA for Controlled Delivery of Anticancer DrugMu, L., Chan-Park, Mary Bee-Eng, Yue, Chee Yoon, Feng, S.S. 01 1900 (has links)
A suitable management of the pharmaceutical property is needed and helpful to design a desired nanoparticulate delivery system, which includes the carrier nature, particle size and size distribution, morphology, surfactant stabiliser according to the technique applied, drug-loading ratio and encapsulation efficiency, surface property, etc. All will influence the in vitro release, in vivo behaviour and tissue distribution of administered particulate drug loaded nanoparticles. The main purpose of the present work was to determine the effect of drug loading ratio when employing TPGS as surfactant stabiliser and/or matrix material to improve the nanoparticulate formulation. The model drug employed was paclitaxel. / Singapore-MIT Alliance (SMA)
|
312 |
BIOREACTOR SYSTEM DESIGNS FOR LIPASE-CATALYZED SYNTHESIS OF SACCHARIDE- FATTY ACID ESTERS IN SOLVENT-FREE MEDIAYe, Ran 01 August 2011 (has links)
As nontoxic biobased surfactants derived from plant oils and cellulose or starch, saccharide-fatty acid esters are widely used in cosmetics, food, and pharmaceutical industries due to their biocompatibility, biodegradability as well as antimicrobial activity. Generally, saccharide-fatty acid esters are synthesized chemically under high pressure, temperature and the presence of alkaline or acid catalysts leading to low-quality products (chemo-degradation of double bonds and oxygenated moieties) and large amounts of byproducts. In contrast, biocatalytic synthesis enhances sustainability: near-ambient pressure and temperature, the absence of toxic, acids and bases catalysts, and improved selectivity of products. For lipase-catalyzed synthesis under nearly anhydrous conditions, the major hurdle to be overcome is the poor miscibility of the acyl donor and acceptor substrates, resulting in slow reaction rates. Although several approaches such as, the employments of organic solvents, complexation agents, and ionic liquids, have been reported in the literature, a robust solution is desperately needed. This study focused on employing immobilized lipases under completely solvent-free conditions to synthesize saccharide-fatty acid esters using the ester products to enhance miscibility. Experimentally, metastable saccharide particles with a diameter of 10-100 micron-sized suspensions of saccharide were formed in oleic acid-rich ester mixtures initially for synthesis of saccharide-fatty acid esters in packed bed bioreactor containing immobilized lipases. Water, a by-product that limits ester yield by promoting hydrolysis, was removed via free evaporation. In this dissertation, a bioreactor system was developed for the eco-friendly solvent-free, immobilized lipase-catalyzed synthesis of biobasaed surfactants utilizing suspensions as reaction medium with 88 wt% in 6 days; the performance of the bioreactor systems developed for Objective 1 was optimized through water concentration control and interval time with 91 wt% in 4.8 days; and to improve design of bioreactor system developed in Objective 1 by in-line filter and derive a mathematical model to describe the production of esters by the bioreactor systems developed. Finally, 84 wt% ester content was achieved in 8.4 days.
|
313 |
Kinetics of Anionic Surfactant Anoxic DegradationCamacho, Julianna G. 2010 May 1900 (has links)
The biodegradation kinetics of Geropon TC-42 (trademark) by an acclimated culture was investigated in anoxic batch reactors to determine biokinetic coefficients to be implemented in two biofilm mathematical models. Geropon TC-42 (trademark) is the surfactant commonly used in space habitation. The two biofilm models differ in that one assumes a constant biofilm density and the other allows biofilm density changes based on space occupancy theory. Extant kinetic analysis of a mixed microbial culture using Geropon TC-42 (trademark) as sole carbon source was used to determine cell yield, specific growth rate, and the half-saturation constant for S0/X0 ratios of 4, 12.5, and 34.5. To estimate cell yield, linear regression analysis was performed on data obtained from three sets of simultaneous batch experiments for three S0/X0 ratios. The regressions showed non-zero intercepts, suggesting that cell multiplication is not possible at low substrate concentrations. Non-linear least-squares analysis of the integrated equation was used to estimate the specific growth rate and the half-saturation constant. Net specific growth rate dependence on substrate concentration indicates a self-inhibitory effect of Geropon TC-42 (trademark). The flow rate and the ratio of the concentrations of surfactant to nitrate were the factors that most affected the simulations. Higher flow rates resulted in a shorter hydraulic retention time, shorter startup periods, and faster approach to a steady-state biofilm. At steady-state, higher flow resulted in lower surfactant removal. Higher influent surfactant/nitrate concentration ratios caused a longer startup period, supported more surfactant utilization, and biofilm growth. Both models correlate to the empirical data. A model assuming constant biofilm density is computationally simpler and easier to implement. Therefore, a suitable anoxic packed bed reactor for the removal of the surfactant Geropon TC-42 (trademark) can be designed by using the estimated kinetic values and a model assuming constant biofilm density.
|
314 |
Nucleation in emulsion polymerization : steps towards a non-micellar nucleation theoryNazaran, Pantea January 2008 (has links)
For more than 70 years, understanding of the mechanism of particle nucleation in emulsion polymerization has been one of the most challenging issues in heterophase polymerization research.
Within this work a comprehensive experimental study of particle nucleation in emulsion polymerization of styrene at 70 °C and variety of conditions has been performed. To follow the onset of nucleation, on-line conductivity measurements were applied. This technique is highly sensitive to the mobility of conducting species and hence, it can be employed to follow aggregation processes leading to particle formation. On the other hand, by recording the optical transmission (turbidity) of the reaction mixture particle growth was followed. Complementary to the on-line investigations, off-line characterizations of the particle morphology and the molecular weight have been performed. The aim was to achieve a better insight in the processes taking place after starting the reaction via particle nucleation until formation of colloidally stable latex particles.
With this experimental protocol the initial period of styrene emulsion polymerization in the absence as well as in the presence of various surfactants (concentrations above and below the critical micellization concentration) and also in the presence of seed particles has been investigated. Ionic and non-ionic initiators (hydrophilic and hydrophobic types) have been applied to start the polymerizations.
Following the above algorithm, experimental evidence has been obtained showing the possibility of performing surfactant-free emulsion polymerization of styrene with oil-soluble initiators. The duration of the pre-nucleation period (that is the time between starting the polymerization and nucleation) can be precisely adjusted with the initiator hydrophobicity, the equilibration time of styrene in water, and the surfactant concentration. Spontaneous emulsification of monomer in water, as soon as both phases are brought into contact, is a key factor to explain the experimental results. The equilibration time of monomer in water as well as the type and concentration of other materials in water (surfactants, seed particles, etc.) control the formation rate and the size of the emulsified droplets and thus, have a strong influence on the particle nucleation and the particle morphology.
One of the main tasks was to investigate the effect of surfactant molecules and especially micelles on the nucleation mechanism. Experimental results revealed that in the presence of emulsifier micelles the conductivity pattern does not change essentially. This means that the presence of emulsifiers does not change the mechanism of particle formation qualitatively. However, surfactants assist in the nucleation process as they lower the activation free energy of particle formation. Contrary, seed particles influence particle nucleation, substantially. In the presence of seed particles above a critical volume fraction the formation of new particles can be suppressed. However, micelles and seed particles as absorbers exhibit a common behavior under conditions where monomer equilibration is not allowed.
Results prove that the nucleation mechanism comprises the initiation of water soluble oligomers in the aqueous phase followed by their aggregation. The process is heterogeneous in nature due to the presence of monomer droplets. / Polymere dominieren unsere Welt. Die natürlich vorkommenden Polymeren, wie Proteine, Polynukleotide, und Polysaccharide, sind nötig um das Leben zu erhalten. Ebenso wichtig sind die kommerziell erhältlichen Makromoleküle. Beides sind Bausteine, um Materialien zu konstruieren, welche man in beiden Welten finden kann- der natürlichen und der „Mensch-gemachten“ Welt.
Unter den verschiedenen Polymerisationsmethoden hat sich die Emulsions-polymerisation zu einem weit verbreiteten Prozess entwickelt. Die Emulsionspolymerisation ist ein einzigartiger Polymerisationsprozess, bei dem ein Monomer oder ein Gemisch von Monomeren in einem wässrigen Medium polymerisiert wird. Dabei entsteht eine Dispersion von Polymeren, welche auch als Latex bezeichnet wird. Derzeit werden mehrere Millionen Tonnen von synthetischen Latices mit Hilfe der Emulsionspolymerisation hergestellt. Diese finden zum Beispiel Verwendung als synthetische Gummi, Latexschaum, Latexfarben, Papierbeschichtungen und Klebstoffen. Außerdem findet man sie auch bei Spezialanwendungen, wie Diagnosetests, Pharmakotherapien und chromatographischen Trennmethoden.
Trotz der Vielzahl von industriellen Anwendungen, sollten all jenen, die sich mit Emulsionspolymerisation beschäftigen, den wissenschaftlichen und technologischen Herausforderungen, die sich stellen, bewusst sein. Die wichtigsten Fragen beim Umgang mit der Emulsionspolymerisation beinhalten das Verständnis des Prozesses der Partikelbildung und des Partikelwachstums.
Die vorliegende Dissertation beschäftigt sich mit der Frage der Keimbildungs-etappe in Emulsionspolymerisationen. Die Untersuchungen wurden mit Hilfe eines on-line Leitfähigkeitsmessverfahren sowie einigen off-line analytischen Experimenten durchgeführt. Basierend auf den klaren experimentellen Daten, wurde ein besserer Einblick in die tatsächlichen Zustände des Polymerisationssystems, von der Zeit der neu geboren Kerne bis zu endgültig stabilisierten Teilchen, gewonnen.
|
315 |
Prolonged Drug Release from Gels, using Catanionic MixturesBramer, Tobias January 2007 (has links)
The use of catanionic drug-surfactant mixtures was proven to be an efficient novel method of obtaining prolonged drug release from gels. It was shown that various commonly used drug compounds are able to form catanionic mixtures together with oppositely charged surfactants. These mixtures exhibited interesting phase behaviour, where, among other structures, vesicles and large worm-like or branched micelles were found. The size of these aggregates makes them a potential means of prolonging the drug release from gels, as only monomer drugs in equilibrium with larger aggregates were readily able to diffuse through the gel. When the diffusion coefficient for drug release from the formulation based upon a catanionic mixture was compared to that obtained for the drug substance and gel alone, the coefficient was some 10 to 100 times smaller. The effects of changes in the pH and ionic strength on the catanionic aggregates was also investigated, and this method of prolonging the release was found to be quite resilient to variations in both. Although the phase behaviour was somewhat affected, large micelles and vesicles were still readily found. The drug release was significantly prolonged even under physiological conditions, that is, at a pH of 7.4 and an osmolality corresponding to 0.9% NaCl. Surfactants of low irritancy, capric and lauric acid, may successfully be used instead of the more traditional surfactants, such as sodium lauryl sulfate (SDS), and prolonged release can still be obtained with ease. Some attempts to deduce the release mechanism from the proposed systems have also been made using transient current measurements, dielectric spectroscopy, and modelling of the release using the regular solution theory. In these studies, the previous assumptions made concerning the mechanism responsible for the release were confirmed to a large extent. Only small amounts of the drug existed in monomer form, and most seemed to form large catanionic aggregates with the oppositely charged surfactant.
|
316 |
The Fabrication of Flexible Substrate Using BaTi4O9/Polymer Composites for High Frequency ApplicationLee, Yi-Chih 31 July 2007 (has links)
The flexible substrate was fabricated by BaTi4O9 mixed with O-Cresol Novolac Epoxy, polyether imide or surface active agents. The electrical and physical characteristic measured had been finished. The dielectric property influence of substrate was changed from percentage of BaTi4O9. The dielectric constant model was used by Jayasundere and Smith equation (J. S. eq.) and Lichtenecker equation (L. eq.)
The study of crystalline grain, orientation and phase transfer temperature was used by SEM, XRD, and DSC, respectively. The dielectric constant and dielectric loss tangent of the composite was measured using an HP4294A impedance analyzer. The TM mode calculated by resonate frequency of the composite was measured using an HP4156C network analyzer. The dielectric constant was obtained to TM mode at high frequency.
The result was showed that dielectric constant at low frequency of BaTi4O9, OCN Epoxy and PEI are 57, 5.8 and 3.65, respectively. OCN Epoxy is better than PEI of electrical characteristic. However, OCN Epoxy is not flexible. For this reason, the PEI was focused on electrical property at high frequency.
The BaTi4O9 exhibited a dielectric constant of 39 at frequency during 3~10 GHz. The dielectric constant was measured of 10 at frequency during 2~16 GHz with 70 wt% PEI composite. The dielectric constant is higher than FR-4 substrate to 6.4 of the composite. The low dielectric constant is obtaining to reduce stuffing.
|
317 |
Rheology And Dynamics Of Surfactant Mesophases Using Finite Element MethodPatel, Bharat 01 1900 (has links) (PDF)
No description available.
|
318 |
The influence of biogenic organic compounds on cloud formationEkström, Sanna January 2010 (has links)
Aerosols and clouds provide the largest uncertainty in the atmospheric radiation budget. The main focus of this thesis was to investigate the ability of organic compounds in aerosol particles to form clouds, and more specifically those emitted by living organisms. The cloud forming properties of the highly water-soluble methyltetrols and polyols, which are compounds produced by plants and fungi that are common in aerosol, were studied. All compounds and their salt mixtures have a moderate potential to serve as cloud condensation nuclei (CCN). They are thus not likely to have a significant global impact on cloudiness. The potential presence of surfactants released by microorganisms was investigated for aerosols sampled at different locations. Very low surface tension values were measured for these aerosol extracts (30 mN/m), which implies that these aerosols have good CCN properties and indicate the presence of biosurfactants. Their occurrence in aerosols still needs to be confirmed directly by chemical identification. Reactions of organic compounds in sulfate salt solutions exposed to UV-light were studied and found to produce surface active compounds. Thus, mixed sulfate/organic aerosol could have more favourable CCN properties after exposure to light than when kept in the dark. The surface active compounds were proposed to be long-chained organosulfates with hydrophilic and hydrophobic parts, similar to other amphiphilic surfactants. Mixtures of salt and strong surfactants formed by bacteria were studied using two different techniques for determining their CCN properties. There were inconsistencies between the two methods which could be accounted for by surface partitioning. The studied mixtures were determined to be good potential CCN material in both techniques. All these aspects require further investigation, but if the impact of strong biogenic surfactants on cloud formation is confirmed, a new link between living organisms and climate would be identified. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Manuscript.
|
319 |
Non-viral gene delivery with pH-sensitive gemini nanoparticles : synthesis of gemini surfactant building blocks, characterization and in vitro screening of transfection efficiency and toxicityDonkuru, McDonald 14 January 2009
Research on self-assembling gemini surfactants and other amphiphiles for potential gene delivery applications in research as well as in clinical practice, and as alternatives to viral gene delivery vectors, is beginning to focus more on structureactivity relationships to address the current low gene delivery efficiencies of amphiphiles. Some underlying structureactivity relations are beginning to emerge. But, as a better understanding of the factors that govern the transfection abilities of amphiphile molecules emerges, development of improved non-viral vectors with clinical potential may also emerge.<p>
The research conducted for this thesis was aimed at the design, synthesis and in vitro investigation of gemini surfactants as one of a family of novel amphiphiles being investigated for gene therapeutic applications. The properties of these compounds can be controlled as well as allowed to vary naturally. Gemini surfactant-based gene delivery systems were prepared and characterized for transfer of Luciferase plasmid (pMASIA.Luc) to both COS-7 and PAM 212 cells. Characterization was accomplished using microscopy, dynamic light scattering (DLS) and zeta (ζ) potential analysis. In vitro gene expression and toxicities were evaluated in COS-7 cell and PAM 212 keratinocyte cultures.<p>
The level of in vitro transfection in general was found to correlate strongly with the structure of the gemini surfactants. Among the 12-spacer-12 surfactants, incorporation of a pH-sensitive aza (N-CH3) group, which is also steric hindrance-imposing, in the spacer chain yielded increased transfection, particularly for the 12-7N-12 surfactant. In comparison, the incorporation of the more pH-sensitive imino (N-H) group in the 12-7NH-12 surfactant yielded the highest increase in transfection among the 12-spacer-12 surfactants. The deleterious effect of steric hindrance due to the aza group is more evident when comparing the transfection efficiency of 12-5N-12 (1 × aza, higher) vs. 12-8N-12 (2 × aza, lower transfection). Another highlighted structural feature is provided by the fact that both the 12-7NH-12 and 12-7N-12 surfactants had higher transfection efficiencies than 12-5N-12 and 12-8N-12 surfactants; the first pair has trimethylene spacing, which constitutes an optimal separation between nitrogen centres, while the second pair has shorter dimethylene spacings.<p>
After expanding the structure of surfactants, transfection efficiencies were found to increase in response to increase in hydrocarbon tail length, but were much lower for surfactants with no amino functional groups, those that lacked the optimal trimethylene spacing, or those having both of these limitations in the gemini surfactant spacer. The 18-7NH-18 surfactant had the highest overall transfection in both COS-7 and PAM 212 cells. Gemini surfactant-based gene delivery systems capable of adopting both polymorphic structural phases and which could undergo pH-induced structural transition demonstrated high transfection efficiencies. Gemini surfactants with both characteristics (e.g., 12-7NH-12-based complexes are both polymorphic and pH-sensitive) had higher transfection than gemini surfactants with only one (e.g., 12-3-12-based complexes are only polymorphic).<p>
Overall, the m-7NH-m surfactants, the most efficient surfactants studied, had transfection efficiencies similar to that of the commercial Lipofectamine Plus reagent and imposed no higher toxicity on cells relative to the less efficient surfactants. Thus, the design of the m-7NH-m surfactants to enhance their transfection abilities also ensured that their toxicity to cells were kept minimal. Overall, the design, synthesis and in vitro transfection screening of gemini surfactant candidates has revealed that the m-7NH-m surfactants have the highest transfection efficiencies; they have emerged as suitable candidates for non-viral gene delivery in vivo or at higher levels. Gene delivery investigations for six of the gemini surfactant candidates are being reported for the first time.
|
320 |
The effect of surfactant on the morphology of methane/propane clathrate hydrate crystalsYoslim, Jeffry 05 1900 (has links)
Considerable research has been done to improve hydrate formation rate. One of the ideas is to introduce mechanical mixing which later tend to complicate the design and operation of the hydrate formation processes. Another approach is to add surfactant (promoter) that will improve the hydrate formation rate and also its storage capacity to be closer to the maximum hydrate storage capacity. Surfactant is widely known as a substance that can lower the surface or interfacial tension of the water when it is dissolved in it. Surfactants are known to increase gas hydrate formation rate, increase storage capacity of hydrates and also decrease induction time. However, the role that surfactant plays in hydrate crystal formation is not well understood. Therefore, understanding of the mechanism through morphology studies is one of the important aspects to be studied so that optimal industrial processes can be designed.
In the present study the effect of three commercially available anionic surfactants which differ in its alkyl chain length on the formation/dissociation of hydrate from a gas mixture of 90.5 % methane – 9.5% propane mixture was investigated. The surfactants used were sodium dodecyl sulfate (SDS), sodium tetradecyl sulfate (STS), and sodium hexadecyl sulfate (SHS). Memory water was used and the experiments for SDS were carried out at three different degrees of under-cooling and three different surfactant concentrations. In addition, the effect of the surfactant on storage capacity of gas into hydrate was assessed.
The morphology of the growing crystals and the gas consumption were observed during the experiments. The results show that branches of porous fibre-like crystals are formed instead of dendritic crystals in the absence of any additive. In addition, extensive hydrate crystal growth on the crystallizer walls is observed. Also a “mushy” hydrate instead of a thin crystal film appears at the gas/water interface. Finally, the addition of SDS with concentration range between 242ppm – 2200ppm (ΔT =13.10C) was found to increase the mole consumption for hydrate formation by 14.3 – 18.7 times. This increase is related to the change in hydrate morphology whereby a more porous hydrate forms with enhanced water/gas contacts.
|
Page generated in 0.0515 seconds