121 |
GATA4 Represses Formation of Glioblastoma MultiformeAgnihotri, Sameer 20 August 2012 (has links)
The GATA transcription factors consist of six family members that bind the consensus DNA binding element W-GATA-R, and are poorly characterized in the central nervous system (CNS). In this thesis we identify GATA4 to be expressed in the neurons and glia of normal murine and human embryonic and adult CNS with significant loss in Glioblastoma Multiforme (GBM). GBM is the most common and lethal primary brain tumour and exhibits multiple molecular aberrations. Here we report that loss of the transcription factor GATA4, a negative regulator of normal astrocyte proliferation, is a driver in glioma formation and fulfills the hallmarks of a tumour suppressor gene. Although GATA4 was expressed in normal brain, loss of GATA4 was observed in GBM operative samples and was a negative survival prognostic marker. GATA4 loss occurred through promoter hypermethylation or novel somatic mutations. Loss of GATA4 in normal human astrocytes promoted high-grade astrocytoma formation, in cooperation with other relevant genetic alterations such as activated Ras or loss of TP53. Loss of GATA4 with activated Ras in normal astrocytes promoted a progenitor like phenotype, formation of neurospheres and the ability to differentiate into astrocytes, neurons and oligodendrocytes. Re-expression of GATA4 in human GBM cell lines, primary cultures and brain tumour initiating cells suppressed tumour growth in vitro and in vivo through direct activation of the cell cycle inhibitor P21CIP1, independent of TP53. Re-expression of GATA4 also conferred sensitivity of GBM cells to temozolomide, a DNA alkylating agent currently used in GBM therapy. This sensitivity was independent of MGMT, the DNA repair enzyme often implicated in temozolomide resistance. Instead GATA4 reduced expression of APNG, a DNA repair enzyme poorly characterized in GBM mediated temozolomide resistance. Identification and validation of GATA4 as a tumour suppressor gene and its downstream targets in GBM may yield promising novel therapeutic strategies.
|
122 |
The Implications of Developmental and Evolutionary Relationships between Pancreatic Beta-cells and NeuronsArntfield, Margot Elinor 06 December 2012 (has links)
A pancreatic stem cell could provide the tissue necessary for widespread β-cell transplantation therapy for diabetes. It is disputed whether pancreatic stem cells or β-cell replication are responsible for maintenance and regeneration of endocrine cells. Evidence presented here shows that pancreatic stem cells express insulin and produce multiple endocrine, exocrine and neural cells in vitro and in vivo. The human pancreas also contains stem cells that produce functional β-cells capable of reducing blood sugar levels in a diabetic mouse. Initial studies of pancreatic stem cells grown clonally in vitro indicated that they produced large numbers of neurons, suggesting they may be derived from the neural crest. Evidence shows that there are at least two distinct developmental origins for stem cells in the pancreas; one from the pancreatic lineage that produces endocrine and exocrine cells and one from the neural crest lineage that produces neurons and Schwann cells. Furthermore, pancreatic stem cells require the developmental transcription factor, Pax6, for endocrine cell formation suggesting they are using expected differentiation pathways. There is an interesting evolutionary connection between pancreatic β-cells and neurons which was applied to the derivation of pancreatic stem cells from human embryonic stem cells by using a clonal neural stem cell assay. These pancreatic stem cells express pancreatic and neural markers, self-renew and differentiate into insulin-expressing cells. The overexpression of SOX17 in these cells increases stem cell formation and self-renewal but inhibits differentiation. Overall I will show that there is a genuine stem cell in the adult mammalian pancreas capable of producing functional β-cells, that this stem cell is derived from the pancreatic developmental lineage but the pancreas also contains stem cells from the neural crest lineage, and that the neural stem cell assays that have identified these adult stem cells can be applied to the derivation of a pancreatic stem cell from hESCs.
|
123 |
The Effects of Population Density and Knock-downs of Llipid Metabolism Genes on the Expression of Cuticular Hydrocarbons in Drosophila melanogaserChu, Adrienne 07 August 2009 (has links)
In Drosophila melanogaster, chemical cues in the form of cuticular hydrocarbons play
an important role in reproductive behavior. The social and genetic processes that regulate their
expression, however, are poorly understood. The social environment has been shown to
influence hydrocarbon display. In this study, the effect of population density on the expression of hydrocarbons was evaluated. I demonstrate that the production of certain hydrocarbons depends on the population density in which the animal is reared. Individual hydrocarbons fluctuate in quantity independently from one another but the peaks during a light-dark cycle are static depending mostly on chain length. The regulation of fly hydrocarbons which are density-dependent is shown to be sexually dimorphic. The RNAi knockdown of various
putative lipid metabolism genes was also used to study hydrocarbon expression. This study reveals that lipid metabolism genes which are not obvious mediators of HC synthesis influence cuticular hydrocarbon profiles.
|
124 |
Population Structure and Genetic Diversity of Lake Sturgeon (Acipenser fulvescens) in Canada: Evaluation of Designatable Units for ConservationKjartanson, Shawna 22 September 2009 (has links)
The lake sturgeon (Acipenser fulvescens), is a species with considerable ecological, social and economic value. Unfortunately, over-exploitation and habitat alteration have led to the collapse of lake sturgeon fisheries across North America. Based on conservation concerns, the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) identified eight designatable units (DUs) among Canadian populations of lake sturgeon using the limited information available. These DUs are intended to represent taxonomically, genetically, geographically, or biogeographically distinct units below the species level. In this study, the genetic structuring among 20 lake sturgeon localities was examined using nine microsatellite loci. Lake sturgeon localities conformed to hierarchical partitioning of genetic diversity, with the greatest genetic divergence between localities in the Great Lakes and Hudson Bay drainages. Finally, minimal divergences among the current DUs warrant adjustment of lake sturgeon DU boundaries, to more appropriately reflect the distribution of genetic differentiation among lake sturgeon localities.
|
125 |
Characterizing the Interactomes of ABC Transporters PXA1 and PXA2 using the Integrated Split-Ubiquitin Membrane Yeast Two-hybrid SystemChuk, Matthew 13 January 2010 (has links)
The integrated Membrane Yeast Two-Hybrid technology (iMYTH) was employed to screen the ABCD family of ABC Transporters in S. cerevisiae. The two ABCD members, Pxa1p and Pxa2p were screened against yeast libraries which detected many interactors involved in expected biological processes in accordance with Pxa1p and Pxa2p’s annotated function (i.e. fatty acid metabolism), and unexpected new interactors that may elucidate a new role for the transporters (e.g. oxidative protection). Members of the glutaredoxins and thioredoxins, and associated proteins were found to interact with Pxa1p and Pxa2p. This may indicate that Pxa1p and Pxa2p also play a role in managing the redox environment, protecting against reactive oxygen species. The iMYTH technology was also used to show that Pxa2p is able to form homodimers, and that Pxa1p localization is directly or indirectly dependent on Pxa2p.
|
126 |
Development of the Mouse NotochordTamplin, Owen James 08 March 2011 (has links)
During development of the vertebrate embryo, a highly conserved tissue called the organizer forms during gastrulation, and is required for establishment of the basic body plan. In mouse, the organizer gives rise to the node and notochord, which are both transient signaling centres involved in patterning the body axes. The genetic regulation and morphogenesis of these tissues, particularly in the mouse, is not well understood. To follow the formation of these tissues we used time-lapse live imaging together with conventional cell lineage tracking. This showed that the notochord has distinct morphogenetic origins along the anterior-posterior axis: anterior head process forms by condensation of dispersed midline organizer cells; trunk forms by convergent extension of node cells; tail forms from posteriorly migrating node cells—this challenges the previously accepted model that tail notochord forms by node regression. We have also found there are distinct genetic requirements within these different regions. Previous mouse mutant analysis showed that conserved transcription factors Foxa2 and Noto are required for either all notochord regions or just tail notochord, respectively. We found a novel genetic interaction between the two demonstrated Foxa2 compensates for Noto specifically in the trunk notochord. Furthermore, we found Noto has a conserved role in regulating axial (notochord) versus paraxial (somite) cell fate. Therefore, we proposed there are three distinct regions within the mouse notochord, each with its own unique morphogenetic origins and genetic control. We have also conducted two microarray-based screens to identify novel gene expression patterns in the node and notochord. First, we compared Foxa2 mutant and wild type gastrula embryos. Second, we isolated notochord progenitors from early somite stage embryos. Extensive in situ hybridization screening based on both data sets revealed over 50 node and notochord expression patterns. Lastly, we screened Foxa2-bound chromatin regions near these notochord-specific genes using a transient zebrafish expression assay, and identified two novel notochord cis-regulatory modules. Together, we found a combination of classical genetics, embryology, and novel imaging techniques, has given us a better understanding of the morphogenesis and genetic regulation of pattern formation in the developing mouse embryo.
|
127 |
The Role of BERP in Mammalian SystemsCheung, Carol Chui-San 17 January 2012 (has links)
p53 functions as an important tumour suppressor through its ability to regulate a number of important cellular processes such as cell cycle arrest, apoptosis, DNA repair, senescence, and angiogenesis. An in vivo genetic modifier screen performed using Drosophila melanogaster resulted in the identification of D. melanogaster brain tumour (brat) as a putative modifier of of the p53 small eye phenotype. Mammalian homologs of brat are members of the tripartite motif family that contain a c-terminal NHL domain. We focus on elucidating the in vivo role of one such homolog, BERP, through the generation and characterization of a classical gene-deletion mouse mutant. We report that BERP-deficient mice exhibit enhanced learning/memory, increased fear, impaired motor coordination, and increased resistance to PTZ -induced seizures. Electrophysiological and biochemical studies show a decrease in mIPSC amplitude along with a decrease in cell surface expression of gamma2 subunit-containing GABA A receptors in the brains of BERP-deficient mice. In addition, no effect of genotype is apparent when examining BERP mRNA levels in the brain. This suggests that the decreased cell surface expression of gamma2 subunit-containing GABA A receptors is likely a posttranscriptional phenomenon and supports the possibility that BERP may be involved in the intracellular trafficking of GABA A receptors. In investigating the possible relationship between BERP and p53, we identify the presence of a transcriptionally competent p53 response element within the first intron of the human BERP genomic locus and demonstrate that the BERP expression is up regulated in a p53-dependent manner both in vitro and in vivo. These results support the interpretation that BERP is a novel p53-regulated gene and suggest a new role for p53 in the regulation of GABA A receptor trafficking and epileptogenesis.
|
128 |
Regulation of Germ-line Expression of the Caenorhabditis elegans Gene Fem-1 by Maternal TranscriptsJohnson, Cheryl Lynn 05 December 2012 (has links)
In addition to previously identified roles for RNA, several new ways in which RNA serves as a regulator of gene expression have recently been described. RNA molecules are involved in both transcriptional and post-transcriptional forms of regulation, sometimes heritably affecting gene activity. Whereas most previously characterized regulatory roles of RNA involve downregulation, I describe a role for maternal transcripts of a gene in promoting zygotic activity of that gene, which I term the licensing of genetic activity. This regulation occurs in the germ line, a tissue notable for its abundance of genetic surveillance mechanisms.
The maternal-effect regulation described here was identified using alleles of a sex-determining gene in Caenorhabditis elegans called fem-1. Females homozygous for fem-1 deletions produce heterozygous offspring that exhibit germ-line feminization and have reduced fem-1 activity and transcript accumulation. This phenotype can be rescued by injecting fem-1 RNA into the maternal germ line. The reduction in activity of the zygotic fem-1 locus is heritable, suggesting that the gene is becoming epigenetically silenced. Thus the maternal fem-1 RNA licenses the activity of the zygotic locus by preventing its silencing. By restricting germ-line activity to genes that were expressed in the germ line of the previous generation, this process may contribute to protecting the identity and integrity of the germ line.
I performed an RNAi screen of candidate genes to ask whether they are required for maternal-effect silencing or licensing. Several enhancers and suppressors of germ-line feminization in the descendants of fem-1 deficiency homozygotes were identified. Chromatin regulation may be involved, and small-RNA pathways are important for both the silencing and licensing components of fem-1 regulation. Based on my characterization of this phenomenon, I proposed models of how maternal-effect regulation of fem-1 may be mediated. To test predictions of certain models, I examined whether specific characteristics of fem-1 make it susceptible to this silencing. Results of these experiments limit the possible models of maternal-effect regulation and suggest directions for future investigation.
|
129 |
The Effects of Polo-like Kinase 4 on Chromosomal Stability, Cell Migration and TumourigenesisRosario, Carla 31 August 2011 (has links)
Plk4 is the most divergent member of the family of polo like kinases (Plks). Plk4-/- embryos arrest at approximately day 7.5 p.c. but Plk4+/- mice are viable and fertile. However, 50% of Plk4+/- mice develop spontaneous tumours of the liver, lung and soft tissues by 2 years of age. Here I investigate the mechanisms that underlie Plk4-related tumourigenesis.
Plk4+/- murine embryonic fibroblasts (MEFs) spontaneously become immortal in vitro with increasing passage number and are tumourigenic in vivo when injected into NOD SCID mice. Cytogenetic analysis showed that Plk4 deficient cells are chromosomally unstable with a large number of chromosomal aberrations and increased ploidy. These results demonstrate that early loss of a single Plk4 allele is sufficient to drive cell immortalization, chromosomal instability and tumourigenicity in vivo.
In two independent expression array analyses, gene expression patterns that would decrease cell migration were overrepresented in Plk4+/- MEFs. A series of spreading and migration assays functionally validated these results, supporting the hypothesis that Plk4 regulates cell motility. Endogenous Plk4 localized to filopodia and lamellipodia in motile cells and to protrusions of spreading cells; the latter localization was transient and it disappeared by 4h after cell seeding, at which point Plk4 was located in the centrosomes, as typically observed in interphase cells. Transient transfection with Flag-Plk4 enhanced spreading and migration, as well as actin remodeling. Taken together, these data demonstrate temporal regulation of Plk4 in relation to the process of membrane remodeling, and a functional role for Plk4 in cell motility.
Plk4 is haploinsufficient for tumour suppression in mice. Plk4 is located at human chromosome 4q28, a region often deleted in primary liver cancer specimens. Here I show that loss-of-heterozygosity (LOH) occurs at the Plk4 locus in ≈50% of human hepatocellular carcinomas (HCC) as well as in preneoplastic cirrhotic liver nodules. LOH at Plk4 is associated with reduced Plk4 expression in HCC tumours, but not with mutations in the remaining allele. These results implicate Plk4 as a potential haploinsufficient tumour suppressor in the genesis of human HCC. With continuing high rates of the predisposing conditions Hepatitis B and non-alcoholic steatohepatitis, and delayed diagnosis, HCC is a global health issue and carries a grave prognosis. A better understanding of genetic predisposition will help guide future screening programs.
|
130 |
Molecular Population Genetic Consequences of Evolutionary Transitions from Outcrossing to Selfing in PlantsNess, Robert W. 13 June 2011 (has links)
The transition from cross-fertilization to predominant self-fertilization is considered the most common evolutionary transition in flowering plants. This change in mating system has profound influences on the amounts and patterns of genetic diversity within and among populations, and on key genetic and demographic processes. The main goal of my thesis is to determine the molecular population genetic consequences of this transition in the annual neotropical aquatic plant Eichhornia paniculata (Pontederiaceae) using DNA sequence from individuals sampled from throughout the species’ geographic range. Populations exhibit a wide range of mating patterns associated the evolutionary breakdown of tristyly facilitating specific contrasts between outcrossing and selfing populations.
Analysis of molecular variation supported the hypothesis of multiple origins of selfing, including the evolution of two morphologically distinct selfing variants from Central America and the Caribbean. A survey of 10 nuclear loci from 225 individuals sampled from 25 populations demonstrated the joint influence of mating system, population size and demographic bottlenecks in affecting patterns of nucleotide variation. Small selfing populations exhibited significantly lower genetic diversity compared with larger outcrossing and mixed mating populations. There was also evidence for higher population differentiation and a slower decay of linkage disequilibrium in predominately selfing populations from the Caribbean region. Coalescent simulations of the sequence data indicated a bottleneck associated with colonization of the Caribbean from Brazil ∼125,000 years ago.
To investigate the consequences of transitions from outcrossing to selfing across the genome, I used high-throughput, short-read sequencing to assemble ~27,000 ESTs representing ∼24Mbp of sequence. Characterization of floral transcriptomes from this dataset identified 269 genes associated with floral development, 22 of which were differentially expressed in three independently derived selfing lineages compared to an outcrossing genotype. Evidence for relaxed selection in selfing lineages was obtained from an analysis of a subset of ~8000 orthologous sequences from each genotype, as predicted by theory. Selfing genomes showed an increase in the proportion of nonsynonymous to synonymous changes and relaxation of selection for codon usage bias. My thesis represents the most detailed investigation to date of the molecular population genetic consequences of intraspecific variation in the mating systems of plants.
|
Page generated in 0.0186 seconds