• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 334
  • 61
  • 10
  • Tagged with
  • 406
  • 90
  • 78
  • 42
  • 37
  • 29
  • 26
  • 25
  • 24
  • 21
  • 21
  • 20
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Improvements in Hazard & Life Cycle Impact Assesment Method for Metals in Freshwaters - Addressing Issues of Metal, Speciation, Fate, Exposure and Ecotoxicity

Gandhi, Nilima 09 January 2012 (has links)
Methods of chemical hazard ranking and toxic impact assessment estimate fate and toxicity assuming the chemical exists in dissolved and particulate phases and, for metals, that all dissolved species are equally bioavailable. This treatment of metals, similar to organic chemicals, introduced a significant error in their estimates of hazard ranking since metal bioavailability and ecotoxicity are related to truly dissolved phase and specifically free metal ion within it. My thesis addressed this concern by developing a new method that introduced Bioavailability Factor (BF) to the calculation of Comparative Toxicity Potentials (CTPs) for hazard ranking of chemicals; also known as Characterization Factors for use in Life Cycle Impact Assessment (LCIA). First, the metal speciation/complexation was incorporated into fate calculations by loosely coupling commercial geochemical metal speciation model, WHAM, with a multimedia fate model, USEtoxTM, which is originally designed to calculate CTPs for organic chemicals. Second, Biotic Ligand Model (BLM) was used to calculate the bioavailability-corrected adverse toxic effects of metals. This new method was applied to assess the implications of choosing environmental characteristics, notably freshwater chemistry, by calculating BFs and CTPs of several cationic metals (e.g., Cd, Cu, Co, Pb, Ni and Zn) using 12 European, 24 Canadian ecoregions, several distinct freshwater-types selected from large river and lake systems world-wide. The newly estimated metal CTPs (i.e., ecotoxicity potentials) are up to ~1000 times lower than previous values used in LCIA. Notably the model results showed that the absolute values of CTPs, and their relative ranking amongst chemicals, are a product of the characteristics of a receiving environment. Hence it is crucial to select a generic freshwater archetype on which this analysis should be based. Finally, the new model framework was extended to apply within the Unit World Model (UWM) framework to estimate critical loads (CLs) of cationic metals to surface aquatic systems.
212

Engineering Boronsubphthalocyanine for Organic Electronic Applications

Morse, Graham Edward Jr. 04 March 2013 (has links)
Boronsubphthalocyanines (BsubPcs) are a class of organic semiconducting materials which are relatively underdeveloped in their synthetic methods and organic semiconducting applications. A comprehensive investigation of these materials is explored in a rigorous and strategic manner progressing through each stage of the materials development cycle: materials selection from computational screening, organic/organometallic synthesis of target materials using known methods or by the development of new synthetic methods, physical and chemical analysis of new materials, and device implementation in organic light emitting diodes and organic photovoltaic cells. The result is the formation of new compositions of BsubPc specifically engineered for application as organic semiconductors in devices. Specifically, phenoxy-boronsubphthalocyanine derivatives are investigated starting with a computational study of their molecular orbitals – a property that dictates their function (donor or acceptor behaviour) in organic electronic devices. The nature of the axial phenoxylate is found to vary the energy level of the frontier molecular orbitals minimally, by up to ~0.4 eV while the nature of the BsubPc periphery can shift the energy levels of the frontier molecular orbitals by >1 eV. The differential sensitivity of the axial phenoxylate and the BsubPc periphery becomes a key design element allowing controlled adjustments of the frontier molecular orbitals by peripheral modification and isolating the design physical chemical properties essential to device fabrication to the axial phenoxylate. Subsequently, an investigation into the solubility and sublimability of these materials is performed, which leads to their investigation in OLED and OPV devices. The success from the phenoxy-BsubPcs study has led to the exploration of new chemistry to expand the available axial nucleophiles beyond phenoxylates. Previously unattainable sulphur and nitrogen nucleophiles are synthesised using two methods (1) the condensation of Cl-BsubPc with phthalimides and (2) the activation of Cl-BsubPc using aluminum chloride to access thiols and anilines. The phthalimido-BsubPcs synthesized from this method are incorporated in OLEDs.
213

Inkjet-printed Light-emitting Devices: Applying Inkjet Microfabrication to Multilayer Electronics

Angelo, Peter 02 August 2013 (has links)
This work presents a novel means of producing thin-film light-emitting devices, functioning according to the principle of electroluminescence, using an inkjet printing technique. This study represents the first report of a light-emitting device deposited completely by inkjet printing. An electroluminescent species, doped zinc sulfide, was incorporated into a polymeric matrix and deposited by piezoelectric inkjet printing. The layer was printed over other printed layers including electrodes composed of the conductive polymer poly(3,4-ethylenedioxythiophene), doped with poly(styrenesulfonate) (PEDOT:PSS) and single-walled carbon nanotubes, and in certain device structures, an insulating species, barium titanate, in an insulating polymer binder. The materials used were all suitable for deposition and curing at low to moderate (<150°C) temperatures and atmospheric pressure, allowing for the use of polymers or paper as supportive substrates for the devices, and greatly facilitating the fabrication process. The deposition of a completely inkjet-printed light-emitting device has hitherto been unreported. When ZnS has been used as the emitter, solution-processed layers have been prepared by spin-coating, and never by inkjet printing. Furthermore, the utilization of the low-temperature-processed PEDOT:PSS/nanotube composite for both electrodes has not yet been reported. Device performance was compromised compared to conventionally prepared devices. This was partially due to the relatively high roughness of the printed films. It was also caused by energy level misalignment due to quantization (bandgap widening) of the small (<10 nm) nanoparticles, and the use of high work function cathode materials (Al and PEDOT:PSS). Regardless of their reduced performance, inkjet printing as a deposition technique for these devices presents unique advantages, the most notable of which are rapidity of fabrication and patterning, substrate flexibility, avoidance of material wastage by using drop-on-demand technology, and the need for only one main unit operation to produce an entire device.
214

The Effects of Alkaline Peroxide Treatment on Physical and Structural Properties of Low Consistency Refined Paper

Trocki, Pawel Kamil 30 November 2011 (has links)
Physical property data was used to test two hypotheses pertaining to the impact of a chemical pre-treatment on the qualities of low consistency refined pulp. The first objective was to determine whether the addition of a chemical treatment would effectively accelerate the refining process when compared to a regular pulp. This involved the measurement of the physical property data and how it changed with increased refining energy. The second objective was to determine how the chemical treatment affected fibre development during refining, and whether its implementation could result in enhancement of inter-fibre bondability. Theoretical models for the physical properties of paper were used to study the fibre-to-fibre bonding properties of the tested paper samples. Additionally, SEM images were obtained to study the deferences in morphology of the tested pulp samples.
215

Development of an Activated Carbon from Anaerobic Digestion By-product to Remove Hydrogen Sulfide from Biogas

White, Andrew James 03 December 2012 (has links)
The production of biogas through the anaerobic digestion of cattle manure and its subsequent use in the generation of electricity on large Ontario farms is currently economically attractive. While larger farms have advantages of scale, there are substantially more small farms for which individually designed and engineered biogas systems are prohibitively expensive. Although biogas has numerous benefits, it contains hydrogen sulfide, an odourous, poisonous and corrosive gas, which emits sulfur oxides upon combustion. Larger systems can afford to use specialized biogas engines which tolerate some levels of hydrogen sulfide. For smaller scale systems to be financially attractive the hydrogen sulfide needs to be removed inexpensively, allowing for more flexibility in engine choice for electricity generation. In this work, the solid by-products from the anaerobic digestion process were used to create activated carbon, which has a high capacity for hydrogen sulfide. Not only does the carbon adsorb hydrogen sulfide, it allows for the surface oxidation of hydrogen sulfide to elemental sulfur and sulfate. Since the sulfur is in a beneficial form for fertilizer use, and there are no chemicals added to create the carbon, the spent sulfur-containing carbon can be land applied, eliminating any spent carbon disposal costs.
216

Development and Deployment of a Continuous-flow Diffusion Chamber for the Field Measurement of Atmospheric Ice Nuclei

Corbin, Joel Christopher 30 May 2011 (has links)
Ice crystals in clouds frequently form upon a subset of aerosol particles called ice nuclei (IN). IN influence cloud ice crystal concentrations, consequently affecting cloud lifetime and reflectivity. The present understanding of these effects on climate is hindered by limited data on the global distribution of IN. This thesis presents measurements of deposition-mode IN concentrations under conditions relevant to mid-level clouds, 238 K and 138% RHi. at two Canadian sites: Toronto, a major city, and Whistler, a pristine coniferous rainforest. In Toronto, chemically-resolved surface areas were estimated by single-particle mass spectrometry and regressed against IN concentrations to identify a significant relationship between IN concentrations and both carbonaceous aerosols (EC and/or OC) and dust. In Whistler, IN concentrations during a biogenic secondary organic aerosol (SOA) event did not increase from background levels (0.1 /L), suggesting that biogenic SOA particles do not nucleate ice under these conditions.
217

Spray Drying Based Technologies for the Double Fortification of Salt with Iron and Iodine

Romita, Dan 25 August 2011 (has links)
The fortification of salt with iron may reduce the prevalence of iron deficiency globally, but fortification is complicated by iron-iodiate interactions. To minimize this interaction, a spray dry microencapsulation system was developed. This study evaluated the creation and use of this system, and produced engineered iron premixes for integration into coarse iodized salt. Bioavailable ferrous fumarate powders were encapsulated to produce small particles (<20μm). Feed systems containing both suspended and dissolved ferrous fumarate were compared to find optimal conditions. The premixes were blended into iodized salt at 1000ppmiron and stored at 40C, ~60%RH. The salt was sampled periodically for 6 months to evaluate iodine stability. All encapsulated samples showed increased stability. The capsules ability to adhere to the salt as well as its colour and apparent bioavailability were evaluated. The evaluated samples indicate that stable double-fortified salt based on inexpensive, coarse, unrefined salt may be obtained economically by this approach.
218

The Fortification of Salt with Iodine, Iron, and Folic Acid

McGee, Elisa 22 November 2012 (has links)
Micronutrient poor diets around the globe and in particular in the developing world cause deficiencies in iron and folic acid. This may be rectified by the incorporation of these micronutrients into currently running salt iodization processes. The objective of this project was to develop folic acid and iodine spray solutions to be ready for pilot scale testing and to investigate the stability of triple fortified salt containing iodine, folic acid and microencapsulated ferrous fumarate. The optimal spray solutions were buffered to pH 9 with a carbonate/bicarbonate buffer to stabilize folic acid and contained 1%-2% w/v folic acid and 1%-3% w/v iodine (as KIO3). They remained in solution and retained ≥80% of both micronutrients after 5 months of storage at 25ºC and 45ºC. Double fortified salt produced using these spray solutions retained 100% of both folic acid and iodine over a 5 month period when stored at ambient conditions. Unfortunately triple fortified salt did not sufficiently retain the micronutrients due to excess moisture absorption and inadequate encapsulation of iron.
219

Adaptation of a Dechlorinating Culture, KB-1, to Acidic Environments

Li, Yi Xuan 20 November 2012 (has links)
KB-1 is an anaerobic Dehalococcoides-containing microbial culture used industrially to bioremediate sites impacted with chlorinated solvents. The culture is typically grown at pH 7. However, lower pH is often encountered and therefore the effect of pH was investigated. Both sudden and stepwise decreases in pH from 7 to 6 and 5.5 were investigated over a period of 450 days. An electron balance was also calculated to look at the flow of electrons for dechlorination. More than 95% of the reducing equivalents went towards methanogenesis and acetogenesis. Select microorganisms were compared by quantitative Polymerase Chain Reaction. It was found that lower rates of dechlorination correspond to low Dehalococcoides numbers and that different methanogens were enriched on different electron donors.
220

Substrates and Substrate Interactions in Anaerobic Dechlorinating Cultures

Wei, Kai 27 November 2012 (has links)
Bioremediation of chlorinated contaminants in groundwater can be achieved by reductive dechlorination by anaerobic dechlorinating cultures. However, at sites impacted with multiple different chlorinated contaminants, reductive dechlorination is often inhibited by co-contaminants. The inhibitory effects of trichloroethene, cis-dichloroethene and vinyl chloride on chloroform dechlorination were studied using a Dehalobacter-containing chloroform dechlorinating mixed culture (ACT-3). The inhibitory effect of chloroform on chlorinated ethene dechlorination was studied in a Dehalococcoides-containing trichloroethene dechlorinating mixed culture (KB-1). Vinyl chloride was found to be the strongest inhibitor of chloroform in ACT-3. Chloroform exerted a complex and strong inhibitory effect on chlorinated ethene dechlorination in KB-1. The potential for microbial reductive defluorination was also examined in the enrichment cultures. Quantifying the substrates and substrate interactions in dechlorinating cultures is necessary to most efficiently use these cultures to remediate contaminated sites.

Page generated in 0.0234 seconds