171 |
Morphology and Interfaces in Polymer Blends Studied by Fluorescence Resonance Energy Transfer (FRET)Felorzabihi, Neda 12 August 2010 (has links)
This thesis describes a fundamental study of the miscibility and the nature of the interface between components of core-shell polymer blends using the technique of Fluorescence Resonance Energy Transfer (FRET) coupled with data analysis that involves Monte-Carlo simulations. Our aim in this study was to develop a fundamental methodology to quantitatively determine the width of the interface between the two components in binary polymer blends. At the current state of the art, data analysis of FRET experiments requires translational symmetry. In the system under study, uniform core-shell structures satisfy this criterion. Thus, in this work our focus was directed toward the study of a blend system with a core-shell structure.
For this FRET study, I have identified a number of potential donor and acceptor dye pairs that fluoresce in the visible range of the spectrum and can be chemically attached to polymers. Among them, I selected, as the donor and the acceptor, a pair of naphthalimide dyes that have not previously been used for FRET experiments. Model experiments showed that while the fluorescence decay profile of the donor chromophore was exponential in solution, it was not exponential in polystyrene (PS) or poly(methyl methacrylate) (PMMA) films. Thus, I carried out refinements to existing FRET theory to interpret the data generated by using these dyes. Also, I derived a new model to predict the fluorescence intensity of non-exponential decaying donor dyes in core-shell systems.
I selected a model system composed of a PS core surrounded by a PMMA shell. The PS core particles were prepared by miniemulsion polymerization to obtain cross-linked PS particles with a narrow size distribution. Seeded emulsion polymerization under starved-fed condition was employed to synthesize monodisperse dye-labeled core-shell particles. The extent of miscibility and the nature of interface between the core and the shell polymers were retrieved from a combined study by Monte-Carlo simulations and analysis of the donor fluorescence intensity decays. Agreement between the retrieved interface thickness and the literature data on PS-PMMA validates the methodology developed here for the use of such donor dyes in FRET studies on polymer blends.
|
172 |
In-line Extrusion Monitoring and Product QualityFarahani Alavi, Forouzandeh 15 September 2011 (has links)
Defects in polyethylene film are often caused by contaminant particles in the polymer melt. In this research, particle properties obtainable from in-line melt monitoring, combined with processing information, are used to predict film defect properties.
“Model” particles (solid and hollow glass microspheres, aluminum powder, ceramic microspheres, glass fibers, wood particles, and cross-linked polyethylene) were injected into low-density polyethylene extruder feed. Defects resulted when the polyethylene containing particles was extruded through a film die and stretched by a take-up roller as it cooled to form films 57 to 241mm in thickness.
Two off-line analysis methods were further developed and applied to the defects: polarized light imaging and interferometric imaging. Polarized light showed residual stresses in the film caused by the particle as well as properties of the embedded particle. Interferometry enabled measures of the film distortion, notably defect volume. From the images, only three attributes were required for mathematical modeling: particle area, defect area, and defect volume. These attributes yielded two ”primary defect properties”: average defect height and magnification (of particle area). For all spherical particles, empirical correlations of these properties were obtained for each of the two major types of defects that emerged: high average height and low average height defects. Analysis of data for non-spherical particles was limited to showing how, in some cases, their data differed from the spherical particle correlations.
To help explain empirical correlations of the primary defect properties with film thickness, a simple model was proposed and found to be supported by the high average height defect data: the “constant defect volume per unit particle area” model. It assumes that the product of average defect height and magnification is a constant for all film thicknesses.
A numerical example illustrates how the methodology developed in this work can be used as a starting point for predicting film defect properties in industrial systems. A limitation is that each prediction yields two pairs of primary defect property values, one pair for each defect type. If it is necessary to identify the dominant type, then measurement of a length dimension of sufficient defects in the film is required.
|
173 |
Fate of Current-use Pesticides in the Canadian AtmosphereHayward, Stephen 14 November 2011 (has links)
Across Canada, and around the world, very large amounts of pesticides are produced and applied to agricultural crops each year. Although pesticide usage is declining, they are still a necessary part of industrial agriculture. Numerous pesticides have been quantified in the atmosphere, at high levels near regions of use and at lower, but still significant levels in remote regions. Some of the most persistent pesticides have been banned, but others continue to be used despite their persistence and potential for long-range transport (LRT). We have applied and refined an XAD-2 resin-based passive air sampler (PAS) to study the concentrations of pesticides in the atmosphere. A set of laboratory experiments measured the equilibria sorption coefficients for chemicals on XAD-2 resin, allowing the determination of a new predictive equation for equilibria sorption coefficients, and thus interpretation of the range of applicability of both XAD-based PAS and active air samplers (AAS). A set of field experiments were performed to compare the data obtained by both PAS and AAS, and to study the temporal trends of a wide range of pesticides in an agricultural area of southern Ontario. Because it is now apparent that XAD-PAS sampling rates can vary between compounds and with temperature, we also determined new compound-specific sampling rates for pesticides in the XAD-PAS. The XAD-PAS were deployed in two transects across Canada, one from the Great Lakes region to the Canadian Arctic, and one across southern British Columbia in four different mountain regions and at different elevations. The air concentrations of current-use pesticides were correlated with regions of their use in both transects. The variation of air concentration with elevation was correlated with local, ground-level sources in British Columbia. The LRT of pesticides was determined from the north-south transect, and correlated to their atmospheric half-lives. Historic-use pesticides such as hexachlorobenzene and hexachlorocyclohexane were found to have relatively uniform distributions in the Canadian atmosphere, while further evidence of α-hexachlorocyclohexane evaporation from oceans was observed in both transects.
|
174 |
Structure and Application of Photosensitive Self-assembled Pseudoisocyanine J-aggregates on Membrane SurfacesMo, Gary Chia Hao 31 August 2011 (has links)
Understanding the assembly of monomeric components into specific molecular motifs is a central theme in materials and surface engineering. Motif designs, specifically using a controllable template, can yield materials with desired optical or electronic properties. The objective of this thesis is to understand the aggregate size, packing, and monomer orientation for the cationic dye, pseudoisocyanine. These organic molecules assemble into crystals in solution, on planar bilayer templates, and on the membranes of living cells. Pseudoisocyanine J-aggregates were found to form on top of the heterogeneous lipid domains in a phospholipid bilayer. This behaviour is limited to a few headgroup chemistries and lateral packing motifs, allowing one to control aggregation via a combination of these two factors. These aggregates are low-dimensional and display polymorphism. Using atomic force microscopy and visible-light spectroscopy, distinct optical characteristics can be correlated to different bilayer templated J-aggregate morphologies. The molecular packing of a similar J-aggregate crystal was resolved using both atomic force microscopy and selected area electron diffraction. The infrared absorption spectra of different polymorphs also displayed distinct differences. These separate examinations enabled a perspective that clarifies the geometry, packing, orientation, and size of templated J-aggregates. Insights into the templating of J-aggregates on the molecular scale reveals that they are sensitive reporters of membrane phase in adherent cells, and are compatible with established cell biology techniques. Lipid domains in live mammalian cells were visualized using fluorescent J-aggregates in combination with endogenous marker proteins of the endocytic process. Analysis of live cell images and additional biophysical work revealed that pseudoisocyanine J-aggregates formed on domains of the anionic lipid bis(monoacylglycerol)phosphate. Only by using J-aggregates can this lipid be shown to form well-ordered domains during endosomal maturation, leading to multivesicular body formation. These data demonstrate that a correlated optical and topographical approach is necessary to understand the structure of fluorescent molecular assemblies, and form the basis for utilizing such aggregates in a biological context.
|
175 |
Controlling the Physical Properties of Organic Semiconductors through Siloxane Chemistry and other Organic Electronic MaterialsKamino, Brett Akira 10 January 2014 (has links)
Triarylamine type materials with vastly altered physical properties are synthesized by hybridizing organic semiconducting structures with silicone and siloxane groups. By altering the silicon content of these materials, we can tune their physical composition from free flowing liquids, to amorphous glasses, to cross-linked films. Much of this modification is enabled by the unique use of a metal-free Si-H activation chemistry; the Piers-Rubinsztajn reaction. This chemistry is demonstrated to be a general and rapid way to build up hybrid semiconducting structures. Key to the utility of these materials in electronic devices, it is shown that hybridization with silicon groups has a negligible effect on the useful electrochemical properties of the base materials. Building on this, it is shown that charge carrier mobility through a prototypical liquid organic semiconductor is similar to the base materials and transport is described by existing dispersive transport theories. Finally, two side projects in the area of organic electronics are discussed. New phthalonitrile based fluorophores are characterized and their utility as deep-blue emitting dopants in organic light emitting diodes is demonstrated. These same π-extended phthalonitriles can also be used as precursors to new red-shifted BsubPcs which display exceptional electrochemical stability and tuning.
|
176 |
A Composite Polymeric Drug Delivery System for Treatment of Spinal Cord InjuryBaumann, Matthew Douglas John 04 August 2010 (has links)
There are no clinically approved drug delivery strategies designed for localized and sustained release to the injured spinal cord, two features which are heavily exploited in pre-clinical demonstrations of efficacy. We have previously shown that injection of drug loaded hydrogels into the intrathecal space is safe, minimally invasive, and drug release localized to the site of injection for up to one day. In the present work we developed a platform for sustained release from 1 to 28 days based on a physical gel of methylcellulose with hyaluronan and poly(lactic-co-glycolic acid) (PLGA) nanoparticles added as gelation agents. These composite hydrogels met the design criteria of injectability, fast gelation, minimal swelling, and 28 day stability. Sustained release of 6 therapeutic molecules from the composite was achieved by encapsulation in the particles or dissolution in the hydrogel. Release of PLGA encapsulated drugs from the composite was linear for 28 days. Drugs dissolved in the hydrogel were released by Fickian diffusion. The HAMC hydrogel/PLGA nanoparticle composite was delivered to uninjured and spinal cord injured rats and the animals monitored for 14 and 28 days respectively. The composite was well tolerated in the intrathecal space with no impact on motor function as determined by the BBB scale and minimal inflammation in both studies. No increase in reactive astrocytes or cavity volume was found in clip compression spinal cord injured rats, indicating that the composite did not affect these aspects of the secondary injury cascade. We then turned to sustained release of anti-NogoA, a promising neuroregenerative molecule typically delivered for 2 - 4 weeks. Formulations of anti-NogoA or a model IgG were prepared and release was demonstrated over 28 days in vitro. Bioactivity was assessed using a novel ELISA which utilized anti-NogoA / NogoA binding to detect only active antibody, advantageous because anti-NogoA release can now be easily optimized prior to in vivo studies of efficacy. The key features of current work are the development of an intrathecal drug delivery platform, demonstration of safety in a rat model, and formulation for use with anti-NogoA.
|
177 |
Design of a Novel Serum-free Monolayer Differentiation System for Murine Embryonic Stem Cell-derived Chondrocytes for Potential High-content Imaging ApplicationsWaese, Yan Ling Elaine 31 August 2011 (has links)
Cartilage defects have limited capacity for repair and are often replaced by fibrocartilage with inferior mechanical properties. To overcome the limitations of artificial joint replacement, high throughput screens (HTS) could be developed to identify molecules that stimulate differentiation and/or proliferation of articular cartilage for drug therapy or tissue engineering. Currently embryonic stem cells (ESCs) can differentiate into articular cartilage by forming aggregates (embryoid body (EB), pellet, micromass), which are difficult to image. I present a novel, single-step method of generating murine ESC (mESC)-derived chondrocytes in monolayer cultures in chemically defined conditions. Mesoderm induction was achieved in cultures supplemented with BMP4, Activin A or Wnt3a. Prolonged culture with sustained Activin A, TGFβ3 or BMP4 supplementation led to robust chondrogenic induction. A short pulse of Activin A or BMP4 also induced chondrogenesis efficiently while Wnt3a acted as a later inducer. Long-term supplementation with Activin A or with Activin A followed by TGFβ3 may specifically promote articular cartilage formation. Thus, I devised a serum-free (SF) culture system to generate ESC-derived chondrocytes without the establishment of 3D cultures or the aid of cell sorting. Cultures were governed by the same signaling pathways as 3D ESC differentiation systems and limb bud mesenchyme or articular cartilage explant cultures. I am also in the process of creating a Col2a1 promoter-controlled, Cre-inducible reporter cell line to be used in my SF culture system using the Multisite Gateway® cloning technology. ESCs undergoing chondrogenic differentiation can be identified and quantified in HTS via the expression of fluorescent proteins. In addition, this transgenic line can be used to isolate ESC-derived chondrocytes as well as their progeny via cell sorting or antibiotic selection for in-depth characterization. The modular design of my construct system allows transgenic lines to be generated using various promoters of chondrogenic marker genes to perform parallel HTS analyses.
|
178 |
Application of an Endothelialized Modular Construct for Islet TransplantationGupta, Rohini 05 September 2012 (has links)
Successful survival of large volume engineered tissues depends on the development of a vasculature to support the metabolic demands of donor tissue in vivo. Pancreatic islet transplantation is a cell therapy procedure to treat Type 1 diabetes that can potentially benefit from such a vascularization strategy. The treatment is limited as the majority of transplanted islets (60%) fail to engraft due to insufficient revascularization in the host(1, 2). Modular tissue engineering is a means of designing large volume functional tissues using micron sized tissues with an intrinsic vascularization. In this thesis, we explored the potential of endothelialized modules to drive vascularization in vivo and promote islet engraftment. Human endothelial cells (EC) covered modules were transplanted in the omental pouch of athymic rats and human EC formed vessels near implanted modules until 7 days when host macrophages were depleted. Rat endothelial cells covered modules were similarly transplanted in the omental pouch of allogeneic rats with and without immunosuppressants. When the drugs were administered, endothelialized modules significantly increased the vessel density. Moreover, donor GFP labelled EC formed vessels that integrated with the host vasculature and were perfusable until 60 days; this key result demonstrate for the first time that unmodified primary endothelial cells form stable vessels in an allograft model. Transplantation of islets in such endothelialized modules significantly improved the vessel density around transplanted islets. Donor endothelial cells formed vessels near transplanted islets in allogeneic immunesuppressed recipients. Meanwhile, there was an increase in islet viability with transplantation of endothelialized modules in syngeneic recipients but this difference was not significant. In summary, endothelialized modules were effective in promoting stable vascularization and improving transplanted islet vascularisation. Future work should promote faster maturity of donor vessels and modulate the host immune and inflammatory responses to significantly improve transplanted islet engraftment.
|
179 |
Polymeric Micelles for SiRNA and AON DeliveryChan, Dianna 21 November 2012 (has links)
Immuno-nanoparticles of poly(ᴅ,ʟ-lactide-co-2-methyl-2-carboxytrimethylene carbonate)-g-poly(ethylene glycol) (poly(LA-co-TMCC)-g-PEG) have been used to target breast cancer cells through the specific binding of trastuzumab antibodies to over-expressed human epidermal growth factor receptor 2 (HER2). Small interfering RNA (siRNA) and antisense oligonucleotides (AONs) disrupt the synthesis of select proteins. It is hypothesized that oligonucleotides coupled to polymeric immuno-nanoparticles can be used for gene silencing and specifically to target luciferase. The first objective is to demonstrate the capacity to create dual functional micelles with antibodies and oligonucleotides. The second objective is in vitro testing of the nanoparticle for gene silencing activity.
Oligonucleotides are conjugated to the nanoparticle by sequential click reactions of Diels Alder chemistry and copper catalyzed azide-alkyne cycloadditions, respectively. A luciferase assay is used to quantify knockdown of luciferase levels in SKOV-3luc cells (HER2+, luc+). When used in conjunction with a targeted drug delivery vehicle, the nanoparticles provide selective interactions with SKOV-3luc cells.
|
180 |
Characteristics of Engine Emissions from Different Biodiesel BlendsWan, Curtis 04 January 2012 (has links)
Engine exhaust characteristics from two different biodiesel blends, formulated from soy and animal fat biodiesel blended with ultra-low sulphur diesel, were tested during two different test programs with similar operating conditions. Engine exhaust was measured in real-time for nitrogen oxides, total hydrocarbons, particle-bound polyaromatic hydrocarbons, and particle size distribution. Diesel particulate matter was collected on filters and subsequently analyzed for organic carbon, elemental carbon, soluble organic fraction, cations, and anions. The use of biodiesel was found to increase nitrogen oxide emissions, but decrease total hydrocarbons and particulate matter emissions. The most significant impact on emissions was the difference between the engine operating conditions rather than the fuel type. Minor differences were found between the soy and animal fat biodiesel blends through speciation of the diesel particulate matter.
|
Page generated in 0.0142 seconds